5.如圖,在⊙O中,弦AB的長(zhǎng)為8cm,圓心O到AB的距離OE=3cm,則⊙O的半徑為(  )
A.2cmB.3cmC.5cmD.10cm

分析 由在⊙O中,弦AB的長(zhǎng)為8cm,圓心O到AB的距離OE=3cm,根據(jù)垂徑定理的即可求得AE的長(zhǎng),然后由勾股定理求得答案.

解答 解:∵在⊙O中,弦AB的長(zhǎng)為8cm,圓心O到AB的距離OE=3cm,
∴AE=$\frac{1}{2}$AB=4cm,
∴OA=$\sqrt{A{E}^{2}+O{E}^{2}}$=5cm.
故選C.

點(diǎn)評(píng) 此題考查了垂徑定理以及勾股定理.注意掌握垂直弦的直徑平分這條弦定理的應(yīng)用是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,五角星繞著它的旋轉(zhuǎn)中心旋轉(zhuǎn),使得△ABC與△DEF重合,那么旋轉(zhuǎn)角的度數(shù)至少為( 。
A.60°B.120°C.72°D.144°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知:如圖,△ABC中的頂點(diǎn)A、C分別在平面直角坐標(biāo)系的x軸、y軸上,且∠ACB=90°,AC=2,BC=1,當(dāng)點(diǎn)A從原點(diǎn)出發(fā)朝x軸的正方向運(yùn)動(dòng),點(diǎn)C也隨之在y軸上運(yùn)動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到原點(diǎn)時(shí)點(diǎn)A停止運(yùn)動(dòng),連結(jié)OB.
(1)點(diǎn)A在原點(diǎn)時(shí),求OB的長(zhǎng);
(2)當(dāng)OA=OC時(shí),求OB的長(zhǎng);
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,OB是否存在最大值?若存在,請(qǐng)你求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.計(jì)算:($\sqrt{3}+2$)2015($\sqrt{3}-2$)2016=2-$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6),點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t=2秒時(shí),求四邊形OPQB的面積;
(3)當(dāng)t為何值時(shí),以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△AOB相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求值:3(x2+$\frac{2}{3}x$)-(3x2-1),其中x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在一個(gè)不透明的袋子中有10個(gè)除顏色外均相同的小球,通過(guò)多次摸球試驗(yàn)后,發(fā)現(xiàn)摸到白球的概率約為30%,估計(jì)袋中白球有3個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖①所示是一個(gè)長(zhǎng)方體盒子,四邊形ABCD是邊長(zhǎng)為a的正方形,DD′的長(zhǎng)為b.

(1)寫出與棱AB平行的所有的棱:A′B′,D′C′,DC;
(2)求出該長(zhǎng)方體的表面積(用含a、b的代數(shù)式表示);
(3)當(dāng)a=40cm,b=20cm時(shí),工人師傅用邊長(zhǎng)為c的正方形紙片(如圖②)裁剪成六塊,作為長(zhǎng)方體的六個(gè)面,粘合成如圖①所示的長(zhǎng)方體.
①求出c的值;
②在圖②中畫出裁剪線的示意圖,并標(biāo)注相關(guān)的數(shù)據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.當(dāng)x分別取-2015、-2014、-2013、…、-2、-1、0、1、$\frac{1}{2}$、$\frac{1}{3}$、…、$\frac{1}{2013}$、$\frac{1}{2014}$、$\frac{1}{2015}$時(shí),計(jì)算分式$\frac{{x}^{2}-1}{{x}^{2}+1}$的值,再將所得結(jié)果相加,其和等于( 。
A.-1B.1C.0D.2015

查看答案和解析>>

同步練習(xí)冊(cè)答案