某商場將進(jìn)貨價(jià)為30元的臺燈以40元售出,平均每月能售出600個(gè).市場調(diào)研表明:當(dāng)銷售價(jià)為每上漲1元時(shí),其銷售量就將減少10個(gè).商場要想銷售利潤平均每月達(dá)到最大,每個(gè)臺燈的定價(jià)應(yīng)為多少元?這時(shí)應(yīng)進(jìn)臺燈多少個(gè)?月銷售利潤最大為多少元?
設(shè)臺燈的售價(jià)為x元,利潤為y元,
則每個(gè)臺燈的利潤為(x-30)元,銷售量=[600-10(x-40)],
依題意:y=(x-30)[600-10(x-40)]=(x-30)(1000-10x),
∴y=-10x2+1300x-30000=-10(x-65)2+12250,
當(dāng)x=65時(shí),y最大=12250元
答:這種臺燈的售價(jià)應(yīng)定為65元,每月的最大利潤是12250元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知頂點(diǎn)為P的拋物線y=
1
2
x2+bx+c
經(jīng)過點(diǎn)A(-3,6),并x軸交于B(-1,0),C兩點(diǎn).
(1)求此拋物線的解析式;
(2)求四邊形ABPC的面S;
(3)試判斷四邊形ABPC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,拋物線y=
4
9
x2+
2
9
mx+
5
9
m+
4
3
與x軸交于A,B兩點(diǎn),已知點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B在x軸的正半軸上,且BO=2AO,點(diǎn)C為拋物線的頂點(diǎn).
(1)求此拋物線的解析式和經(jīng)過B,C兩點(diǎn)的直線的解析式;
(2)點(diǎn)P在此拋物線的對稱軸上,且⊙P與x軸、直線BC都相切.求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰三角形ABC的兩個(gè)頂點(diǎn)分別是A(0,1)、B(0,3),第三個(gè)頂點(diǎn)C在x軸的正半軸上.關(guān)于y軸對稱的拋物線y=ax2+bx+c經(jīng)過A、D(3,-2)、P三點(diǎn),且點(diǎn)P關(guān)于直線AC的對稱點(diǎn)在x軸上.
(1)求直線BC的解析式;
(2)求拋物線y=ax2+bx+c的解析式及點(diǎn)P的坐標(biāo);
(3)設(shè)M是y軸上的一個(gè)動點(diǎn),求PM+CM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩條拋物線y1=-
1
2
x2+1,y2=-
1
2
x2-1
與分別經(jīng)過點(diǎn)(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為( 。
A.8B.6C.10D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在對稱軸上存在一點(diǎn)P,使得△PBC的周長最。埱蟪鳇c(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用12m長的柵欄圍成一個(gè)中間被隔斷的鴨舍(柵欄占地面積忽略不計(jì)).

(1)如圖1,當(dāng)AB=______m,BC=______m時(shí),所圍成兩間鴨舍的面積最大,最大值為______m2
(2)如圖2,若現(xiàn)有一面長4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在“母親節(jié)”期間,某校部分團(tuán)員參加社會公益活動,準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對應(yīng)關(guān)系如圖所示:
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤.

查看答案和解析>>

同步練習(xí)冊答案