【題目】已知:如圖,在四邊形ABCD中,AB∥CD,E是BC的中點,直線AE交DC的延長線于點F.試判斷四邊形ABFC的形狀,并證明你的結論.
【答案】解:四邊形ABFC是平行四邊形;理由如下:
∵AB∥CD,
∴∠BAE=∠CFE,
∵E是BC的中點,
∴BE=CE,
在△ABE和△FCE中, ,
∴△ABE≌△FCE(AAS);
∴AE=EF,
又∵BE=CE
∴四邊形ABFC是平行四邊形
【解析】利用平行線的性質得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出對應邊相等AE=EF,再利用平行四邊形的判定得出即可.此題主要考查了平行四邊形的判定、全等三角形的判定與性質等知識;熟練掌握平行四邊形的判定方法,證明三角形全等是解決問題的關鍵.
【考點精析】本題主要考查了平行四邊形的判定的相關知識點,需要掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,△ABP與是兩個全等的等邊三角形,且,有下列四個結論:①,②,③,④四邊形ABCD是軸對稱圖形,其中正確的有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市勁威鄉(xiāng)A、B兩村盛產柑橘,A村有柑橘200噸,B村有柑橘300噸,現將這些柑橘運到C、D兩個冷藏倉庫,已知C倉庫可儲存240噸,D倉庫可儲存260噸,從A村運往C、D兩處的費用分別為每噸20元和25元,從B村運往C、D兩處的費用分別為每噸15元和18元.設從A村運往C倉庫的柑橘重量為x噸,A、B兩村運往兩倉庫的柑橘運輸費用分別為yA元和yB元.
【1】請?zhí)顚懴卤?/span>
【2】求出yA、yB與x之間的函數解析式;
【3】試討論A、B兩村中,哪個村的運費最少;
【4】考慮B村的經濟承受能力,B村的柑橘運費不得超過4830元,在這種情況下,請問怎樣調運才能使兩村運費之和最小?求出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數;
(2)判斷BE與AC的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網格中每個小正方形的邊長是1個單位長度).
(1)△A1B1C1是△ABC繞點逆時針旋轉度得到的,B1的坐標是;
(2)求出線段AC旋轉過程中所掃過的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BE是線段AB的延長線,且∠CBE=∠A=∠C.
(1)由∠CBE=∠A可以判斷____∥_____,根據是_____________;
(2)由∠CBE=∠C可以判斷____∥_____,根據是_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+4與x軸、y軸分別交于點A、B,拋物線y=﹣ (x﹣m)2+n的頂點P在直線y=﹣x+4上,與y軸交于點C(點P、C不與點B重合),以BC為邊作矩形BCDE,且CD=2,點P、D在y軸的同側.
(1)n=(用含m的代數式表示),點C的縱坐標是(用含m的代數式表示);
(2)當點P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應的函數解析式;
(3)直接寫出矩形BCDE有兩個頂點落在拋物線上時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于O點,OM平分∠AOB.
(1)若∠1=∠2,求∠NOD的度數;
(2)若∠BOC=4∠1,求∠AOC與∠MOD的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com