如圖,已知等邊三角形ABC,以邊BC為直徑的半圓與邊ABAC分別交于點D、點E,過點EEFAB,垂足為點F.

(1)試判斷EF與⊙O的位置關系,并證明你的結論;

(2)過點FFHBC,垂足為點H,若等邊△ABC邊長為8,求FH的長.

 (1)EF是⊙O的切線…….1’

連接OE,∵△ABC是等邊三角形,∴∠B=∠C=∠A=60°,……2’

OEOC,∴△OCE是等邊三角形,∴∠EOC=∠B=60°,∴OEAB…….4’

EFAB,∴EFOE,∴EF是⊙O得切線;.....5’

(2) 連接BE,有BEAC,即AECE=4…….6’

∵∠A=60°,EFAB,

∴∠AEF=30°,∴AF=2.∴BF=6…….8’

FHBC,∠B=60°,

∴∠BFH=30°,∴BH=3,則HF=…….10’

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖1,當點M在點B左側時,請你判斷EN與MF有怎樣的數(shù)量關系?點F是否在直線NE上?都請直接寫出結論,不必證明或說明理由;
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結論中EN與MF的數(shù)量關系是否仍然成立?若成立,請利用圖2證明;若不成立,請說明理由;
(3)若點M在點C右側時,請你在圖3中畫出相應的圖形,并判斷(1)的結論中EN與MF的數(shù)量關系是否仍然成立?若成立,請直接寫出結論,不必證明或說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點D,在AC上取點E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個頂點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.
(1)猜測直線BE和直線AC的位置關系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.請猜測直線BE和直線AC的位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發(fā)以1cm/s的速度向點A運動,點Q從點C出發(fā)以2cm/s的速度向點A運動,連接PQ,以Q為旋轉中心,將線段PQ按逆時針方向旋轉60°得線段QD,若點P、Q同時出發(fā),則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習冊答案