【題目】已知△ ABC 是等腰三角形,CA=CB,0°<∠ACB≤90°,點 M 在邊 AC 上,點 N在邊 BC 上(點 M、點 N 不與所在線段端點重合),BN=AM,連接 AN,BM.射線 AG∥BC,延長 BM 交射線 AG 于點 D,點 E 在直線 AN 上,且 AE=DE.
(1)如圖,當∠ACB=90°時,
①求證:△ BCM≌△ACN;
②求∠BDE 的度數(shù);
(2)當∠ACB=ɑ ,其它條件不變時,∠BDE 的度數(shù)是 (用含ɑ 的代數(shù)式表示).
(3)若△ ABC 是等邊三角形,AB=3,點 N 是 BC 邊上的三等分點,直線 ED 與直線 BC 交于點 F,請直接寫出線段 CF 的長.
【答案】(1)詳見解析;90°;(2)α或180-α;(3)或.
【解析】
(1)①根據(jù)SAS證明即可;
②想辦法證明∠ADE+∠ADB=90°即可;
(2)分兩種情形討論求解即可,①如圖2中,當點E在AN的延長線上時,②如圖3中,當點E在NA的延長線上時;
(3)分兩種情形求解即可,①如圖4中,當BN=BC=時,作AK⊥BC于K.解直角三角形即可.②如圖5中,當CN=BC=時,作AK⊥BC于K,DH⊥BC于H.
(1)①如圖1.
∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM,即CN=CM.
∵∠ACN=∠BCM,∴△BCM≌△ACN.
②如圖1.
∵△BCM≌△ACN,∴∠MBC=∠NAC.
∵EA=ED,∴∠EAD=∠EDA.
∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD=∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.
(2)如圖2,當點E在AN的延長線上時.
易證:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD.
∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.
如圖3,當點E在NA的延長線上時.
易證:∠1+∠2=∠CAN+∠DAC.
∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.
綜上所述:∠BDE=α或180°﹣α.
故答案為:α或180°﹣α.
(3)如圖4,當BN=BC=時,作AK⊥BC于K,連結CD.
∵AD∥BC,∴==,∴AD=,AC=3,易證△ADC是直角三角形,則四邊形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.
如圖5,當CN=BC=時,作AK⊥BC于K,DH⊥BC于H.
∵AD∥BC,∴==2,∴AD=6,易證△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.
綜上所述:CF的長為或4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點D在邊BC上,CD=3,⊙A的半徑長為3,⊙D與⊙A相交,且點B在⊙D外,那么⊙D的半徑長r的取值范圍是( )
A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△OAB的直角頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),且∠B=60°,點P為斜邊OB上的一個動點,則PA+PC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的邊BC上一點,AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是 ;
第二個數(shù)是 ;
第三個數(shù)是 ;
…
對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于 .
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設這列數(shù)的第5個數(shù)為a,那么 , , ,哪個正確?
請你直接寫出正確的結論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于 ”;
(3)設M表示 , , ,…, ,這2016個數(shù)的和,即 ,
求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在x軸上,A,C兩點的坐標分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動點P從點B出發(fā),以每秒2單位長度的速度沿射線BO勻速運動,設點P運動的時間為ts.
(1)求A,C兩點的坐標;
(2)連接PA,若△PAB為等腰三角形,求點P的坐標;
(3)當點P在線段BO上運動時,在y軸上是否存在點Q,使△POQ與△AOC全等?若存在,請求出t的值并直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時,他了解到這個公司除收取每次6元的包裝費外,櫻桃不超過1kg收費22元,超過1kg,則超出部分按每千克10元加收費用.設該公司從西安到南昌快遞櫻桃的費用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請你求出這次快寄的費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com