【題目】嘗試探究
如圖-,在△ABC中,∠C=90°,∠A=30°,點(diǎn)E、F分別是BC、AC邊上的點(diǎn),且EF//BC.
的值為 ;直線與直線的位置關(guān)系為 ;
類(lèi)比延伸
如圖,若將圖中的繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過(guò)程中,請(qǐng)判斷的值及直線與直線的位置關(guān)系,并說(shuō)明理由;
拓展運(yùn)用
若,在旋轉(zhuǎn)過(guò)程中,當(dāng)三點(diǎn)在同一直線上時(shí),請(qǐng)直接寫(xiě)出此時(shí)線段的長(zhǎng).
【答案】 ; ; ;(3)或
【解析】
(1)①根據(jù)直角三角形30°角的性質(zhì)即可解決問(wèn)題;
②根據(jù)已知可直接得出答案;
(2)只要證明△ACF△BCE,根據(jù)相似三角形的性質(zhì)即可得的值,也可得∠BCE=∠CAF,繼而推導(dǎo)即可得;
(3)分兩種情況畫(huà)出圖形分別解決即可.
①∵在△ABC中,∠ABC=90°,∠A=30°,EF//AB,
∴∠CFE=∠A=30°,
∴CF==EC,AC==BC,
∴AF=AC-CF=BC-EC=(BC-EC)=BE,
∴=,
故答案為:;
②∵∠ACB=90°,
∴,即直線與直線的位置關(guān)系為垂直,
故答案為:;
,
理由如下:由及旋轉(zhuǎn)的性質(zhì)知,,
在中,,
在中,,
,又,
,,
∴=
,
,
如圖,延長(zhǎng)交于點(diǎn),交于點(diǎn),
,,
,,
,,
即;
①如圖,∵△ECB∽△FCA,∴AF:BE=CF:CE=,
設(shè)BE=a,則AF=a,
∵B、E、F共線,∴∠BEC=∠AFC=120°,
∵∠EFC=30°,∴∠AFB=90°,
在Rt△ABF中,AB=2BC=6,AF=a,BF=EF+BE=4+a,
∴,
∴a=-1+或-1-(舍去),
∴AF=a=;
②如圖,當(dāng)E、B、F共線時(shí),同法可證:AF=BE,∠AFB=90°,
在Rt△ABF中,,
∴a=1+或1-(舍去),
∴AF=a=,
綜上,AF的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫(xiě)作法,但要保留作圖痕跡)
(2)求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號(hào)的長(zhǎng)為半徑面狐,兩弧交于點(diǎn),:②做直線,且恰好經(jīng)過(guò)點(diǎn),與交于點(diǎn),連接,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號(hào)的長(zhǎng)為半徑面狐,兩弧交于點(diǎn),:②做直線,且恰好經(jīng)過(guò)點(diǎn),與交于點(diǎn),連接,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=5,AB=8,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,若點(diǎn)D的對(duì)應(yīng)點(diǎn)D′,連接D′B,以下結(jié)論中:①D′B的最小值為3;②當(dāng)DE=時(shí),△ABD′是等腰三角形;③當(dāng)DE=2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認(rèn)為正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),CE=CB,CD=5,.
求:(1)BC的長(zhǎng).
(2)tanE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶(hù)承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場(chǎng)銷(xiāo)售,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),草莓銷(xiāo)售不會(huì)虧本,且每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷(xiāo)售獲得利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷(xiāo)售,能否銷(xiāo)售完這批草莓?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測(cè)試.按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)該校九年級(jí)有600名男生,請(qǐng)估計(jì)成績(jī)未達(dá)到良好有多少名?
(3)某班甲、乙兩位成績(jī)優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com