在下面幾何圖形中,

線段、直線、三角形、正方形、長方形、正方體、棱柱、棱椎、梯形、平行四邊形、正六邊形、圓、球、圓錐、圓柱.

平面圖形有________個,分別是________,立體圖形有________個,分別是________.

9    線段、直線、三角形、正方形、長方形、梯形、平行四邊形、正六邊形、圓    6    正方體、棱柱、棱錐、球、圓錐、圓柱
分析:直接根據(jù)幾何圖形的定義和分類作答.幾何圖形:從實物中抽象出的各種圖形叫幾何圖形.幾何圖形分為立體圖形和平面圖形.
解答:在線段、直線、三角形、正方形、長方形、正方體、棱柱、棱椎、梯形、平行四邊形、正六邊形、圓、球、圓錐、圓柱中.
平面圖形有 9個,分別是 線段、直線、三角形、正方形、長方形、梯形、平行四邊形、正六邊形、圓;
立體圖形有 6個,分別是 正方體、棱柱、棱錐、球、圓錐、圓柱.
故答案為:9,線段、直線、三角形、正方形、長方形、梯形、平行四邊形、正六邊形、圓; 6,正方體、棱柱、棱錐、球、圓錐、圓柱.
點評:本題考查了幾何圖形的定義和分類.幾何圖形包括平面圖形與立體圖形.點、直線、線段、射線、三角形、四邊形等為平面圖形;長方體、圓球、圓錐等為立體圖形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

24、閱讀下面材料,再回答問題:
有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”.
解決下列問題:
(1)菱形的“二分線”可以是
菱形的一條對角線所在的直線

(2)三角形的“二分線”可以是
三角形一邊中線所在的直線.

(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”,并說明你的畫法.

查看答案和解析>>

科目:初中數(shù)學 來源:2011—2012年山東威海第二學期八年級下數(shù)學期末模擬數(shù)學試卷(一)(帶解析) 題型:解答題

閱讀下面材料,再回答問題:
有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”。
解決下列問題:
(1)菱形的“二分線”可以是                                   。
(2)三角形的“二分線”可以是                                 。
(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省鎮(zhèn)江市八年級上學期期末考試數(shù)學試卷(帶解析) 題型:解答題

(本題8分)閱讀下面材料,再回答問題:
有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”.
解決下列問題:
(1)菱形的“二分線”是                          ;
(2)三角形的“二分線”是                        ;
(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”,簡述做法.
    
圖1                                      圖2 
                                                         

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省江門市八年級下學期期末模擬考試數(shù)學試卷 題型:解答題

閱讀下面材料,再回答問題:

有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”。

解決下列問題:

(1)菱形的“二分線”可以是                                    。

(2)三角形的“二分線”可以是                                 

(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年湖北省宜昌市長陽縣九年級上學期期末檢測數(shù)學試卷(解析版) 題型:解答題

閱讀下面材料,再回答問題:

有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”。

解決下列問題:

(1)菱形的“二分線”可以是                                    。

(2)三角形的“二分線”可以是                                 

(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”.

 

查看答案和解析>>

同步練習冊答案