判斷下列式子中的y是否是x的函數(shù)?如果是,請求出自變量的取值范圍,。
(1)y=3x-5;
(2)y=
解:(1)是全體實數(shù);(2)是x≠0。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當(dāng)2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是
 
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列短文,回答有關(guān)問題:
在實數(shù)這章中,遇到過
2
、
3
;
9
;
12
;
a
;這樣的式子,我們把這樣的式子叫做二次根式,根號下的數(shù)叫做被開方數(shù).如果一個二次根式的被開方數(shù)中有的因數(shù)能開的盡方,可以利用
a•b
=
a
b
或者
a
b
=
a
b
將這些因數(shù)開出來,從而將二次根式化簡.當(dāng)一個二次根式的被開方數(shù)中不含開得盡方的因數(shù)或者被開方數(shù)中不含有分?jǐn)?shù)時,這樣的二次根式叫做最簡二次根式,例如,
1
3
化成最簡二次根式是
3
3
,
27
化成最簡二次根式是3
3
.幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式,如上面的例子就是同類二次根式.
(1)請判斷下列各式中,哪些是同類二次根式?
2
75
;
18
;
1
50
1
27
;
3
;
(2)二次根式中的同類二次根式可以像整式中的同類項一樣合并,請計算:
2
+
75
-
18
-
1
50
+
1
27
-
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

給出下列判斷:
16
介于2和3兩個整數(shù)之間;
②如圖,G是AC中點,M是AB中點,N是BC中點,則GN=
1
2
(GB+GC);
③把方程
3x-7
0.4
-
x-0.5
0.5
-
x
0.2
=10分母中的小數(shù)化成整數(shù)得15x-
35
2
-(2x-1)-5x=10;
④若m是任意實數(shù),則式子|m|-m表示的是非負(fù)數(shù),
其中正確的是
②③④
②③④
.(請?zhí)钚蛱枺?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列短文,回答有關(guān)問題:
在實數(shù)這章中,遇到過數(shù)學(xué)公式數(shù)學(xué)公式;這樣的式子,我們把這樣的式子叫做二次根式,根號下的數(shù)叫做被開方數(shù).如果一個二次根式的被開方數(shù)中有的因數(shù)能開的盡方,可以利用數(shù)學(xué)公式將這些因數(shù)開出來,從而將二次根式化簡.當(dāng)一個二次根式的被開方數(shù)中不含開得盡方的因數(shù)或者被開方數(shù)中不含有分?jǐn)?shù)時,這樣的二次根式叫做最簡二次根式,

例如,數(shù)學(xué)公式化成最簡二次根式是數(shù)學(xué)公式,數(shù)學(xué)公式化成最簡二次根式是數(shù)學(xué)公式.幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式,如上面的例子就是同類二次根式.
(1)請判斷下列各式中,哪些是同類二次根式?數(shù)學(xué)公式;
(2)二次根式中的同類二次根式可以像整式中的同類項一樣合并,請計算:數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊答案