如圖,Rt△AOB的兩直角邊OA、OB的長分別是1和3,將△AOB繞O點按逆時針方向旋轉(zhuǎn)90°,至△DOC的位置.
(1)求過C、B、A三點的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點是M,判定△MDC的形狀,并說明理由.

解:(1)由題意知,C、B、A三點的坐標分別為:C(-3,0)、B(0,3)、A(1,0);
設二次函數(shù)的解析式為y=a(x-1)(x+3),依題意,有:
a(0-1)(0+3)=3,解得:a=-1
故過C、B、A三點的二次函數(shù)的解析式為y=-x2-2x+3.

(2)△MDC是等腰直角三角形,理由如下:
由(1)知,拋物線的解析式:y=-x2-2x+3=-(x+1)2+4,則M(-1,4);
易知:C(-3,0)、D(0,1),則:
MC2=(-1+3)2+(4-0)2=20,MD2=(-1-0)2+(4-1)2=10,CD2=(-3-0)2+(0-1)2=10
則MC2=MD2+CD2,且MD=CD,
因此△MDC為等腰直角三角形.
分析:(1)△OCD是由△OBA旋轉(zhuǎn)所得,因此OB=OC、OA=OD,所以由OA、OB的長,即可得出A、B、C、D四點的坐標,利用待定系數(shù)法即可求出過C、B、A三點的二次函數(shù)的解析式.
(2)由(1)的二次函數(shù)解析式不難求出頂點M的坐標,在已知M、C、D三點坐標的情況下,由坐標系兩點間的距離公式可求出MD、CD、MC三邊的長,再由三邊長來判斷△MCD的形狀.
點評:此題考查的內(nèi)容較為簡單,主要涉及旋轉(zhuǎn)圖形的性質(zhì)、利用待定系數(shù)法確定二次函數(shù)的解析式以及等腰直角三角形的判定;(2)的解法較多,也可過M作y軸的垂線,通過構建全等三角形來解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,Rt△AOB的斜邊OA在y軸上,且OA=5,OB=4.將Rt△AOB繞原點O逆時針旋轉(zhuǎn)一定的角度,使直角邊OB落在x軸的負半軸上得到相應的Rt△A′OB′,則A′點的坐標是
(-4,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△AOB的頂點A是一次函數(shù)y=-x+(k+1)的圖象與反比例函數(shù)y=
k
x
的圖象在第四象限的交點,AB垂直x軸于B,且S△AOB=
3
2

(1)求這兩個函數(shù)的解析式;
(2)求出它們的交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△AOB的兩直角邊OB、OA分別位于x軸、y軸上,OA=6,OB=8.

(1)如圖1,將△AOB折疊,點B恰好落在點O處,折痕為CD1,求出D1的坐標;
(2)如圖2,將△AOB折疊,點O恰好落在AB邊上的點C處,折痕為AD2,求出D2的坐標;
(3)如圖3,將△AOB折疊,點O落在△AOB內(nèi)的點C處,OD3=2,折痕為AD3,AD3與OC交于點E,求出點C的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2004•泰安)如圖,Rt△AOB的兩直角邊OA、OB的長分別是1和3,將△AOB繞O點按逆時針方向旋轉(zhuǎn)90°,至△DOC的位置.
(1)求過C、B、A三點的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點是M,判定△MDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△AOB的兩直角邊OA,OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A,B兩點的坐標分別為(-3,0).(0,4),拋物線y=
2
3
x2+bx+c經(jīng)過點B,點M(
5
2
3
2
)是該拋物線對稱軸上的一點.
(1)b=
-
10
3
-
10
3
,c=
4
4
;
(2)若把△AOB沿x軸向右平移得到△DCE,點A,B,O的對應點分別為D,C,E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD.若點P是線段OB上的一個動點(點P與點O,B不重合),過點P作PQ∥BD交x軸于點Q,連接PM,QM.設OP的長為t,△PMQ的面積為S.
①當t為何值時,點Q,M,C三點共線;
②求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.S是否存在最大值?若存在,求出最大值和此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案