【題目】我校計劃在暑假期間對總面積為5400的塑膠操場進行改造,安排甲、乙兩個工程隊完成.已知甲隊每天能完成改造的面積是乙隊每天能完成改造的面積的2倍,并且在獨立完成面積為1200區(qū)域的改造時,甲隊比乙隊少用10天.
(1)求甲、乙兩工程隊每天能完成操場改造的面積分別是多少?
(2)為方便管理,學校每天只允許一個工程隊施工,若學校每天需付給甲隊的施工費用為0.8萬元,乙隊為0.35萬元,要使這次的改造在暑假50天期間完工,怎樣安排才能使費用最。
【答案】(1)甲工程隊每天能完成操場改造的面積是120,乙工程隊每天能完成操場改造的面積是60.
(2)甲工程隊工作40天,乙工程隊工作10天,工程總費用最省.
【解析】
(1)設甲工程隊每天能完成操場改造的面積是2x,乙工程隊每天能完成操場改造的面積是x,根據題意列出方程求解即可;
(2)設甲工程隊工作x天,乙工程隊工作天,工程總費用為S萬元,根據題意列出不等式求解即可.
(1)設甲工程隊每天能完成操場改造的面積是2x,乙工程隊每天能完成操場改造的面積是x
解得
經檢驗:當,,所以根成立
∴
答:甲工程隊每天能完成操場改造的面積是120,乙工程隊每天能完成操場改造的面積是60.
(2)設甲工程隊工作x天,乙工程隊工作天,工程總費用為S萬元
∵要使這次的改造在暑假50天期間完工
∴
解得
∵
∴S隨x的增大而增大
∴
∴當時,工程總費用最省
故甲工程隊工作40天,乙工程隊工作10天,工程總費用最省.
科目:初中數學 來源: 題型:
【題目】小敏從地出發(fā)向地行走,同時小聰從地出發(fā)向地行走,如圖,相交于點的兩條線段分別表示小敏、小聰離地的距離與已用時間之間的關 系,則_______時,小敏、小聰兩人相距.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰中,,點在線段上運動(不與重合),連結,作,交線段于點.
(1)當時,= °;點從點向點運動時,逐漸變 (填“大”或“小”);
(2)當等于多少時,,請說明理由;
(3)在點的運動過程中,的形狀也在改變,判斷當等于多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(a,b)和點Q(a,b′),給出如下定義:
若b′=,則稱點Q為點P的限變點.例如:點(2,3)的限變點的坐標是(2,3),點(-2,5)的限變點的坐標是(-2,-5).
(1)①點(,1)的限變點的坐標是 ;
②在點A(-2,-1),B(-1,2)中有一個點是函數y=圖象上某一個點的限變點,這個點是 ;(填“A”或“B”)
(2)若點P在函數y=-x+3(-2≤x≤k,k>-2)的圖象上,其限變點Q的縱坐標b′的取值范圍是-5≤b′≤2,求k的取值范圍 ;
(3)若點P在關于x的二次函數y=x2-2tx+t2+t的圖象上,其限變點Q的縱坐標b′的取值范圍是b′≥m或b′<n,其中m>n.令s=m-n,求s關于t的函數解析式及s的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某人走進一家商店,進門付l角錢,然后在店里購物花掉當時他手中錢的一半,走出商店付1角錢;之后,他走進第二家商店付1角錢,在店里花掉當時他手中錢的一半, 走出商店付1角錢;他又進第三家商店付l角錢,在店里花掉當時他手中錢的一半,出店付1角錢;最后他走進第四家商店付l角錢,在店里花掉當時他手中錢的一半, 出店付1角錢,這時他一分錢也沒有了.該人原有錢的數目是________角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小正方形的邊長為1,各頂點都在格點上,點,的坐標分別為,,結合所給的平面直角坐標系解答下列問題:
(1)的長等于_________;
(2)將繞點按逆時針方向旋轉90°,畫出旋轉后的,則點對應點的坐標是________;
(3)畫出向右平移2個單位得到的,并求出四邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E為BC上一點,連接AE,作EF⊥AE交AB于F.
(1)求證:△AGC∽△EFB.
(2)除(1)中相似三角形,圖中還有其它相似三角形嗎?如果有,請把它們都寫出來.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家海洋局將中國釣魚島最高峰命名為“高華峰”,并對釣魚島進行常態(tài)化立體巡航.如圖,在一次巡航過程中,巡航飛機飛行高度為2362米,在點A測得高華峰頂F點的俯角為30°,保持方向不變前進1464米到達B點后測得F點俯角為45°,請據此計算釣魚島的最高海拔高度多少米.(結果保留整數,參考數=1.732,=1.414)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com