如圖,已知AB是⊙O的直徑,AD⊥DC,AC平分∠DAB.
(1﹚求證:直線CD與⊙O相切于點(diǎn)C;
(2﹚如果AD和AC的長是一元二次方程x2-(2+
3
)x+2
3
=0
的兩根,求AD、AC、AB的長和∠DAB的度數(shù).
(1)證明:連接OC,
∵AD⊥DC,
∴∠ACD+∠CAD=90°,
∵OA=OC,
∴∠BAC=∠ACO,
又AC平分∠DAB,
∴∠CAB=∠CAD,
∴∠CAD=∠ACO,
∴∠ACD+∠ACO=90°,即OC⊥DC,
∴DC是⊙O的切線;

(2)方程x2-(2+
3
)x+2
3
=0,即(x-2)(x-
3
)=0,
解得:x1=
3
,x2=2,
∵AD<AC,∴AD=
3
,AC=2,
∴CD=
22-(
3
)2
=1,
∵CD=
1
2
AC,
∴∠CAD=30°,
∴∠BAD=60°,
連接BC,
∵AB為直徑,∴∠ACB=90°,
設(shè)BC=x,則AB=2x,
∴x2+22=(2x)2,
∵x>0,
∴x=
2
3
3
,
則AB=
4
3
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

圓外切等腰梯形的底角為30°,中位線的長為8,則該圓的直徑長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABDC,∠B=90°,P為BC上一點(diǎn).
(1)若∠APD=90°,找出圖中兩個(gè)相似的三角形,并加以證明;
(2)若AB=9,DC=4,P為BC的中點(diǎn),∠APD=90°,求BC的長;
(3)在(2)的條件下,試探求以AD為直徑的圓與BC所在直線的位置關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC=4,AC=5,求⊙O的直徑的AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,則CD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于A、B兩點(diǎn),C在
AB
AB上,過C點(diǎn)的切線交PA于E,交PB于F,若∠APB=50°.則∠EOF=( 。
A.45°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:C是以AB為直徑的半圓O上一點(diǎn),CH⊥AB于點(diǎn)H,直線AC與過B點(diǎn)的切線相交于點(diǎn)D,E為CH的中點(diǎn),連接AE并延長交BD于F,直線CF交直線AB于點(diǎn)G.
(1)求證:點(diǎn)F是BD的中點(diǎn);
(2)求證:CG是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,從點(diǎn)P向⊙O引兩條切線PA,PB,切點(diǎn)為A,B,BC為⊙O的直徑,若∠P=60°,PA=3,則⊙O的直徑BC的長為( 。
A.2
3
B.
3
3
C.3D.4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知AB是半圓O的直徑,D是AB延長線上的一點(diǎn),AE⊥DC,交DC的延長線于點(diǎn)E,交半圓O于點(diǎn)F,且C為
BF
的中點(diǎn).
(1)求證:DE是半圓O的切線;
(2)若∠D=30°,求證:∠CAE=∠BCD.

查看答案和解析>>

同步練習(xí)冊答案