如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)和B(3,0)兩點,交y軸于點E.
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點,與y軸交于點F,連接DE,求△DEF的面積.

解:(1)∵拋物線y=x2+bx+c與x軸交于A(-1,0)和B(3,0)兩點,
,
解得:,
故拋物線解析式為:y=x2-2x-3;

(2)根據(jù)題意得:
,
解得:,,
∴D(4,5),
對于直線y=x+1,當x=0時,y=1,∴F(0,1),
對于y=x2-2x-3,當x=0時,y=-3,∴E(0,-3),
∴EF=4,
過點D作DM⊥y軸于點M.
∴S△DEF=EF•DM=8.
分析:(1)利用待定系數(shù)法求二次函數(shù)解析式即可;
(2)首先求出直線與二次函數(shù)的交點坐標進而得出E,F(xiàn)點坐標,即可得出△DEF的面積.
點評:此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及三角形面積求法等知識,利用數(shù)形結合得出D,E,F(xiàn)點坐標是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標;
(2)以點A、B、O、P為頂點構造直角梯形,請求一個滿足條件的頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側.當x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設M是直線x=-1左側拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關于x的函數(shù)解析式;
(3)是否存在點M,使矩形MNHG的周長最?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應的函數(shù)關系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習冊答案