2.計(jì)算:
(1)$\sqrt{12}$-$\sqrt{18}$-$\sqrt{0.5}$+$\sqrt{\frac{1}{3}}$
(2)$\frac{1}{\sqrt{2}-1}$-$\sqrt{6}$$÷\sqrt{3}$-(2$\sqrt{3}$)2

分析 (1)先把各二次根式化為最簡(jiǎn)二次根式,然后合并即可;
(2)先分母有理化和進(jìn)行二次根式的除法運(yùn)算,然后合并即可.

解答 解:(1)原式=2$\sqrt{3}$-3$\sqrt{2}$-$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{3}$
=$\frac{7\sqrt{3}}{3}$-$\frac{7\sqrt{2}}{2}$;
(2)原式=$\sqrt{2}$+1-$\sqrt{2}$-12
=-11.

點(diǎn)評(píng) 本題考查了二次根式的計(jì)算:先把各二次根式化為最簡(jiǎn)二次根式,再進(jìn)行二次根式的乘除運(yùn)算,然后合并同類二次根式.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖.已知圓和正方形的面積都是2πmm2,分別求圓和正方形的周長(zhǎng),并比較大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.今年以來(lái),我國(guó)持續(xù)大面積的霧霾天氣讓環(huán)保和健康問(wèn)題成為焦點(diǎn).為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級(jí):A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的三種統(tǒng)計(jì)圖表.請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題.

A.非常了解5%
B.比較了解m
C.基本了解45%
     D.不了解n
(1)本次參與調(diào)查的學(xué)生共有400人,m=15%,n=35%;
(2)圖2所示的扇形統(tǒng)計(jì)圖中D部分扇形所對(duì)應(yīng)的圓心角是126度;
(3)請(qǐng)補(bǔ)全圖1示數(shù)的條形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,直線AB與CD相交于點(diǎn)O,OD恰為∠BOE的角平分線.
(1)請(qǐng)直接寫出和∠AOD能成為互為補(bǔ)角的角;(把符合條件的角都填出來(lái))
(2)若∠AOD=142°,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解下列方程:
(1)2(x-2)2=18    
(2)2x2-6x-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,下列是由同種型號(hào)的黑白兩種顏色的正三角形瓷磚按一定規(guī)律鋪設(shè)的圖形.仔細(xì)觀察圖形可知:
圖①有1塊黑色的瓷磚,可表示為1=$\frac{(1+1)×1}{2}$;
圖②有3塊黑色的瓷磚,可表示為1+2=$\frac{(1+2)×2}{2}$;

實(shí)踐與探索:
(1)請(qǐng)?jiān)趫D③的虛線框內(nèi)畫出第3個(gè)圖形;(只須畫出草圖)
(2)第4個(gè)圖形有10塊黑色的瓷磚;(直接填寫結(jié)果)
(3)第n個(gè)圖形有$\frac{1}{2}$n(n+1)塊黑色的瓷磚(用含有n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)A(a1,b1),點(diǎn)B(a2,b2)在反比例函數(shù)$y=\frac{-2}{x}$的圖象上,且a1<$a_2^{\;}$<0,那么b1與b2的大小關(guān)系是b1<b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直角坐標(biāo)系中,四邊形ABCO是平行四邊形,已知A($\sqrt{2}$,2$\sqrt{2}$),C(2$\sqrt{2}$,0)
(1)求點(diǎn)B的坐標(biāo);
(2)將平行四邊形ABCO向右平移$\sqrt{2}$個(gè)單位長(zhǎng)度,得到四邊形A1B1C1O1,直接寫出所得四邊形的頂點(diǎn)坐標(biāo);
(3)求平行四邊形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列運(yùn)算正確的是(  )
A.(3xy22=6x2y4B.-2mn2•$\frac{3}{2}$m2n3=-3m2n6
C.x7÷(-x)4=x3D.(3-π)0=0

查看答案和解析>>

同步練習(xí)冊(cè)答案