精英家教網(wǎng)如圖,在直角坐標(biāo)系中,矩形OABC的頂點B的坐標(biāo)為(15,6),直線y=
13
x+b
恰好將矩形OABC分成面積相等的兩部分,那么b=
 
分析:思考本題的出發(fā)點是直線y=
1
3
x+b
恰好將矩形OABC分成面積相等的兩部分,可根據(jù)矩形的性質(zhì),對角線OB把其面積能分成相等的兩部分,求出線段OB的中點,將求出的中點坐標(biāo)代入直線方程即可求出b的值.
解答:解:由B的坐標(biāo)(15,6),得到矩形中心的坐標(biāo)為(7.5,3),
直線y=
1
3
x+b恰好將矩形OABC分成面積相等的兩部分,
將(7.5,3)代入直線y=
1
3
x+b得:
3=
1
3
×7.5+b,
解得:b=
1
2

故答案為:
1
2
點評:本題考查了一次函數(shù)的綜合應(yīng)用及矩形的性質(zhì);找著思考問題的突破口,理解過矩形對角線交點的直線將矩形面積分為相等的兩部分是正確解答本題的關(guān)鍵.本題還可通過求梯形的面積法求得答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點P的坐標(biāo)為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點A的坐標(biāo);
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負(fù)半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案