已知n為正整數(shù).
(1)試比較下列各組數(shù)的大。
-數(shù)學公式與-數(shù)學公式,-數(shù)學公式與-數(shù)學公式,-數(shù)學公式與-數(shù)學公式,-數(shù)學公式與-數(shù)學公式,…-數(shù)學公式與-數(shù)學公式;
(2)你能根據(jù)上面第(1)小題得出-數(shù)學公式與-數(shù)學公式兩者的大小關系嗎?

解:(1)∵-=-,-=-,->-,
∴->-;
∵-=-,-=-,->-,
∴->-;
∵-=-,-=-,->-,
∴->-;
∵-=-,-=-,->-,
∴->-;
…,
∴->-;

(2)∵由(1)可知,->-,
∴->-
分析:(1)根據(jù)兩負數(shù)比較大小的法則比較出各數(shù),找出規(guī)律即可;
(2)根據(jù)(1)中的規(guī)律可直接得出結(jié)論.
點評:本題考查的是有理數(shù)的大小比較,熟知兩負數(shù)比較大小的法則是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、已知K為正整數(shù),多項式6k2+3k-7減去3k2-k-6的2倍的差一定是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知n為正整數(shù),
189n
是整數(shù),則n的最小值是
21
21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安慶二模)觀察下列一組等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,….
解答下列問題:
(1)對于任意的正整數(shù)n:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

【證】
(2)計算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
=
2011
2012
2011
2012

【解】
(3)已知m為正整數(shù)化簡:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2m-1)(2m+1)
=
m
2m+1
m
2m+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a為正整數(shù),關于x的方程
5
2
x-a=
8
5
x+142
的解為整數(shù),求a的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知n為正整數(shù),且(xn2 =9,求(
13
x3n)2
-3(x22n的值.

查看答案和解析>>

同步練習冊答案