(2013•株洲)已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.
分析:(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△AQP∽△ABC;
(2)當△PQB為等腰三角形時,有兩種情況,需要分類討論.
(I)當點P在線段AB上時,如題圖1所示.由三角形相似(△AQP∽△ABC)關系計算AP的長;
(II)當點P在線段AB的延長線上時,如題圖2所示.利用角之間的關系,證明點B為線段AP的中點,從而可以求出AP.
解答:(1)證明:∵∠A+∠APQ=90°,∠A+∠C=90°,
∴∠APQ=∠C.
在△APQ與△ABC中,
∵∠APQ=∠C,∠A=∠A,
∴△AQP∽△ABC.

(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠BPQ為鈍角,
∴當△PQB為等腰三角形時,
(I)當點P在線段AB上時,如題圖1所示.
∵∠QPB為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
PA
AC
=
PQ
BC
,即
3-PB
5
=
PB
4
,解得:PB=
4
3

∴AP=AB-PB=3-
4
3
=
5
3
;
(II)當點P在線段AB的延長線上時,如題圖2所示.
∵∠QBP為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,點B為線段AP中點,
∴AP=2AB=2×3=6.
綜上所述,當△PQB為等腰三角形時,AP的長為
5
3
或6.
點評:本題考查相似三角形及分類討論的數(shù)學思想,難度不大.第(2)問中,當△PQB為等腰三角形時,有兩種情況,需要分類討論,避免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•株洲)已知a、b可以取-2、-1、1、2中任意一個值(a≠b),則直線y=ax+b的圖象不經(jīng)過第四象限的概率是
1
6
1
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•株洲)已知AB是⊙O的直徑,直線BC與⊙O相切于點B,∠ABC的平分線BD交⊙O于點D,AD的延長線交BC于點C.
(1)求∠BAC的度數(shù);
(2)求證:AD=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•株洲)已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線AC與BD交于點O,過點O的直線EF交AD于點E,交BC于點F.
(1)求證:△AOE≌△COF;
(2)若∠EOD=30°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•株洲)已知拋物線C1的頂點為P(1,0),且過點(0,
1
4
).將拋物線C1向下平移h個單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(如圖),且點A、C關于y軸對稱,直線AB與x軸的距離是m2(m>0).
(1)求拋物線C1的解析式的一般形式;
(2)當m=2時,求h的值;
(3)若拋物線C1的對稱軸與直線AB交于點E,與拋物線C2交于點F.求證:tan∠EDF-tan∠ECP=
1
2

查看答案和解析>>

同步練習冊答案