【題目】已知a,b,c為△ABC的三條邊的長(zhǎng),且滿足b2+2ab=c2+2ac.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a=6,b=5,求△ABC的面積.
【答案】(1)△ABC是等腰三角形,理由見解析;(2)12.
【解析】
(1)由已知條件得出b2-c2+2ab-2ac=0,用分組分解法進(jìn)行因式分解得出(b-c)(b+c+2a)=0,得出b-c=0,因此b=c,即可得出結(jié)論;
(2)作△ABC底邊BC上的高AD.根據(jù)等腰三角形三線合一的性質(zhì)得出BD=DC=BC=3,利用勾股定理求出AD==4,再根據(jù)三角形的面積公式即可求解.
(1)△ABC是等腰三角形,理由如下:
∵a,b,c為△ABC的三條邊的長(zhǎng),b2+2ab=c2+2ac,∴b2﹣c2+2ab﹣2ac=0,因式分解得:(b﹣c)(b+c+2a)=0,∴b﹣c=0,∴b=c,∴△ABC是等腰三角形;
(2)如圖,作△ABC底邊BC上的高AD.∵AB=AC=5,AD⊥BC,
∴BD=DC=BC=3,∴AD==4,
∴△ABC的面積=BCAD=×6×4=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))
(1)先將△ABC豎直向上平移5個(gè)單位,再水平向右平移4個(gè)單位得到△A1B1C1 , 請(qǐng)畫出△A1B1C1;
(2)將△A1B1C1繞B1點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得△A2B1C2 , 請(qǐng)畫出△A2B1C2;
(3)求線段B1C1變換到B1C2的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2為對(duì)角線作第一個(gè)正方形A1B1C1B2,以B2B3為對(duì)角線作第二個(gè)正方形A2B2C2B3,以B3B4為對(duì)角線作第三個(gè)正方形A3B3C3B4,…,如果所作正方形的對(duì)角線BnBn+1都在y軸上,且BnBn+1的長(zhǎng)度依次增加1個(gè)單位,頂點(diǎn)An都在第一象限內(nèi)(n≥1,且n為整數(shù)). 那么A1的坐標(biāo)為____________;An的坐標(biāo)為_________(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:
步驟1:分別以點(diǎn)A,D為圓心,以大于 AD的長(zhǎng)為半徑,在AD兩側(cè)作弧,兩弧交于點(diǎn)M,N;
步驟2:連接MN,分別交AB,AC于點(diǎn)E,F(xiàn);
步驟3:連接DE,DF.
下列敘述不一定成立的是( )
A.線段DE是△ABC的中位線
B.四邊形AFDE是菱形
C.MN垂直平分線段AD
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),則∠BOC的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)分別同時(shí)開挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說法中:
①甲隊(duì)每天挖100米;
②乙隊(duì)開挖兩天后,每天挖50米;
③甲隊(duì)比乙隊(duì)提前3天完成任務(wù);
④當(dāng)x=2或6時(shí),甲乙兩隊(duì)所挖管道長(zhǎng)度都相差100米.
正確的有 . (在橫線上填寫正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為直線AB上一點(diǎn),將直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,并在∠MON內(nèi)部作射線OC.
(1)如圖1,三角板的一邊ON與射線OB重合,且∠AOC=150°.若以點(diǎn)O為觀察中心,射線OM表示正北方向,求射線OC表示的方向;
(2)如圖2,將三角板放置到如圖位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度數(shù);
(3)若仍將三角板按照如圖2的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,過等腰直角三角形ABC的直角頂點(diǎn)A作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接BE,CE,其中CE交直線AP于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)若∠PAB=16°,求∠ACF的度數(shù);
(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB,FE,FC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com