考點(diǎn):反比例函數(shù)綜合題,等腰三角形的性質(zhì),平行四邊形的性質(zhì)
專題:代數(shù)幾何綜合題
分析:(1)根據(jù)反比例函數(shù)的性質(zhì)得1-2m>0,然后解不等式得到m的取值范圍;
(2)①根據(jù)平行四邊形的性質(zhì)得AD∥OB,AD=OB=2,易得D點(diǎn)坐標(biāo)為(2,3),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得1-2m=6,則反比例函數(shù)解析式為y=
;
②根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱可得點(diǎn)D關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P滿足OP=OD,則此時(shí)P點(diǎn)坐標(biāo)為(-2,-3);再根據(jù)反比例函數(shù)y=
的圖象關(guān)于直線y=x對(duì)稱,可得點(diǎn)D(2,3)關(guān)于直線y=x對(duì)稱點(diǎn)P滿足OP=OD,此時(shí)P點(diǎn)坐標(biāo)為(3,2),易得點(diǎn)(3,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P也滿足OP=OD,此時(shí)P點(diǎn)坐標(biāo)為(-3,-2);由于以D、O、P為頂點(diǎn)的三角形是等腰三角形,所以以D點(diǎn)為頂點(diǎn)可畫出點(diǎn)P
1,P
2;以O(shè)點(diǎn)頂點(diǎn)可畫出點(diǎn)P
3,P
4,如圖.
解答:解:(1)根據(jù)題意得1-2m>0,
解得m<
;
(2)①∵四邊形ABOD為平行四邊形,
∴AD∥OB,AD=OB=2,
又∵A點(diǎn)坐標(biāo)為(0,3),
∴D點(diǎn)坐標(biāo)為(2,3),
∴1-2m=2×3=6,
∴反比例函數(shù)解析式為y=
;
②∵反比例函數(shù)y=
的圖象關(guān)于原點(diǎn)中心對(duì)稱,
∴當(dāng)點(diǎn)P與點(diǎn)D關(guān)于原點(diǎn)對(duì)稱,則OD=OP,此時(shí)P點(diǎn)坐標(biāo)為(-2,-3),
∵反比例函數(shù)y=
的圖象關(guān)于直線y=x對(duì)稱,
∴點(diǎn)P與點(diǎn)D(2,3)關(guān)于直線y=x對(duì)稱時(shí)滿足OP=OD,
此時(shí)P點(diǎn)坐標(biāo)為(3,2),
點(diǎn)(3,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)也滿足OP=OD,
此時(shí)P點(diǎn)坐標(biāo)為(-3,-2),
綜上所述,P點(diǎn)的坐標(biāo)為(-2,-3),(3,2),(-3,-2);
由于以D、O、P為頂點(diǎn)的三角形是等腰三角形,則以D點(diǎn)為圓心,DO為半徑畫弧交反比例函數(shù)圖象于點(diǎn)P
1,P
2,則點(diǎn)P
1,P
2滿足條件;以O(shè)點(diǎn)為圓心,OD為半徑畫弧交反比例函數(shù)圖象于點(diǎn)P
3,P
4,則點(diǎn)P
3,P
4也滿足條件,如圖,作線段OD的垂直平分線,與反比例函數(shù)的圖象無交點(diǎn).
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合題:掌握反比例函數(shù)圖象的性質(zhì)和其圖象上點(diǎn)的坐標(biāo)特征、平行四邊形的性質(zhì)和等腰三角形的性質(zhì);會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問題.