【題目】我國古代數(shù)學(xué)家的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖這個三角形的構(gòu)造法其兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.利用 規(guī)律計算:25-5×24+10×23-10×22+5×2-1的值為____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的圖象與x軸的一個交點(diǎn)為B(5,0),另一個交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的動點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.
(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;
(2)求乙的步行速度;
(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若的面積為6,則k=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出8個不同的向量:、、、、、、、(由于和是相等向量,因此只算一個)
⑴作兩個相鄰的正方形(如圖一)。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑵作個相鄰的正方形(如圖二)“一字型”排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑶作個相鄰的正方形(如圖三)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑷作個相鄰的正方形(如圖四)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是小聰同學(xué)在一次數(shù)學(xué)興趣小組活動中,用直尺和圓規(guī)對Rt△ACB(∠ACB=90°)進(jìn)行了如下操作:
①作邊AB的垂直平分線EF交AB于點(diǎn)O;
②作∠ACB的平分線CM,CMEF相交于點(diǎn)D;
③連接AD,BD.
請你根據(jù)操作,觀察圖形解答下列問題:
(1)△ABD的形狀是______;
(2)若DH⊥BC于點(diǎn)H,已知AC=6,BC=8,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘇科版九年級下冊數(shù)學(xué)課本91頁有這樣一道習(xí)題:
(1)復(fù)習(xí)時,小明與小亮、數(shù)學(xué)老師交流了自己的兩個見解,并得到了老師的認(rèn)可:
①可以假定正方形的邊長AB=4a,則AE=DE=2a,DF=a,利用“兩邊分別成比例且夾角相等的兩個三角形相似”可以證明△ABE∽△DEF;請結(jié)合提示寫出證明過程.
②圖中的相似三角形共三對,而且可以借助于△ABE與△DEF中的比例線段來證明△EBF與它們相似.證明過程如下:
(2)交流之后,小亮嘗試對問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請你解答:
已知:如圖,在矩形ABCD中,E為AD的中點(diǎn),EF⊥EC交AB于F,連結(jié)FC.
(AB>AE)
①求證:△AEF∽△ECF;
②設(shè)BC=2,AB=a,是否存在a值,使得△AEF與△BFC相似.若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)某班語文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com