【題目】如圖,于點(diǎn),為等腰直角三角形,,當(dāng)繞點(diǎn)旋轉(zhuǎn)時,記.
(1)過點(diǎn)作交射線于點(diǎn),作射線交射線于點(diǎn).
①依題意補(bǔ)全圖形,求的度數(shù);
②當(dāng)時,求的長.
(2)若上存在一點(diǎn),且,作射線交射線于點(diǎn),直接寫出長度的最大值.
【答案】(1)①見解析, 45°②7;(2)見解析,
【解析】
(1)①作于點(diǎn)H,交的延長線于點(diǎn),證明AHO≌AGB, 即可求得∠ODC的度數(shù);
②延長交于點(diǎn),利用條件可求得AK、OK的長度,于是可求OD的長;
(2)分析可知,點(diǎn)B在以O為圓心,OB為半徑的圓上運(yùn)動(個圓),所以當(dāng)PB是圓O的切線時,PQ的值最大,據(jù)此可解.
解:(1)①補(bǔ)全圖形如圖所示,過點(diǎn)作于點(diǎn)H,交的延長線于點(diǎn),
∵,,,
∴∠AGB=∠AHO=∠C =,
∴∠GAH=,
∴∠OAH+∠HAB=∠GAB+∠HAB=,
∴∠OAH =∠GAB, 四邊形為矩形,
∵為等腰直角三角形,
∴OA=AB,
∴AHO≌AGB,
∴AH=AG,
∴四邊形為正方形,
∴∠OCD=45°,
∴∠ODC=45°;
②延長交于點(diǎn),
∵,OA=5,
∴AK=4,
∴OK=3,
∵∠ODC=45°,
∴DK=AK=4
∴ ;
(2)如圖,
∵繞點(diǎn)旋轉(zhuǎn),
∴點(diǎn)B在以O為圓心,OB為半徑的圓上運(yùn)動(個圓),
∴當(dāng)PB是圓O的切線時,PQ的值最大,
∵
∴
∴∠OPB=45°,
∴ OQ=OP=10,
∴.
∴長度的最大值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點(diǎn)A,B,C,D在同一平面內(nèi).
(1)求AB與CD之間的距離(結(jié)果保留根號).
(2)求建筑物CD的高度(結(jié)果精確到1m).(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個單位長度的速度向終點(diǎn)C運(yùn)動.過點(diǎn)P(不與點(diǎn)A、C重合)作EF⊥AC,交AB或BC于點(diǎn)E,交AD或DC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動時間為t秒.
(1)①AC= .②當(dāng)點(diǎn)F在AD上時,用含t的代數(shù)式直接表示線段PF的長 .
(2)當(dāng)點(diǎn)F與點(diǎn)D重合時,求t的值.
(3)設(shè)方形EFGH的周長為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心畫圓,與軸交于;兩點(diǎn),與軸交于兩點(diǎn),當(dāng)時,的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt中,∠A=90°,AC=4,,將沿著斜邊BC翻折,點(diǎn)A落在點(diǎn)處,點(diǎn)D、E分別為邊AC、BC的中點(diǎn),聯(lián)結(jié)DE并延長交所在直線于點(diǎn)F,聯(lián)結(jié),如果為直角三角形時,那么____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點(diǎn)P是直線AB上任意一點(diǎn),聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對角線BD交于點(diǎn)Q(與B、D不重合),且∠PCQ=30°.
(1)如圖,當(dāng)點(diǎn)P在邊AB上時,如果BP=3,求線段PC的長;
(2)當(dāng)點(diǎn)P在射線BA上時,設(shè),求y關(guān)于的函數(shù)解析式及定義域;
(3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點(diǎn)E,如果與相似,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年9月8日,重慶首家海底撈在來福士廣場正式開始試營業(yè),由于重慶人偏好麻辣口味,海底撈來福士店在原有番茄、紅湯牛油、菌菇等多種常規(guī)鍋底的基礎(chǔ)上,專門為重慶人私人訂制了一種“雙椒鍋底”.開業(yè)當(dāng)天,人氣爆滿,番茄鍋和雙椒鍋成為最受歡迎的兩種鍋底,總計銷售300份,銷售總額為9800元.其中雙椒鍋的銷售單價是42元,番茄鍋的銷售單價為28元.
(1)求開業(yè)當(dāng)天番茄鍋銷售數(shù)量;
(2)試營業(yè)一段時間后,商家發(fā)現(xiàn)番茄鍋和雙椒鍋的日均銷量之比為3:2.為了慶祝國慶,回饋廣大顧客,海底撈在國慶期間推出了優(yōu)惠活動,在原有售價的基礎(chǔ)上將番茄鍋降價a%,雙椒鍋降價a%進(jìn)行銷售.10月1日當(dāng)天,番茄鍋的銷量比日均銷量增加了a%,而雙椒鍋的銷量比日均銷量增加了2a%,結(jié)果當(dāng)天這兩種鍋底的銷售總額比日均銷售總額多了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個動點(diǎn).
(1)求此拋物線的解析式;
(2)求C、D兩點(diǎn)坐標(biāo)及△BCD的面積;
(3)若點(diǎn)P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com