【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(3,3),點(diǎn)B(4,0),點(diǎn)C(0,﹣1).
(1)以點(diǎn)C為中心,把△ABC逆時(shí)針旋轉(zhuǎn)90°,請?jiān)趫D中畫出旋轉(zhuǎn)后的圖形△A′B′C,點(diǎn)B′的坐標(biāo)為________;
(2)在(1)的條件下,求出點(diǎn)A經(jīng)過的路徑的長(結(jié)果保留π).
【答案】(1)圖見解析;B′的坐標(biāo)為(﹣1,3);(2).
【解析】
(1)過點(diǎn)C作B′C⊥BC,根據(jù)網(wǎng)格特征使B′C=BC,作A′C⊥AC,使A′C=AC,連接A′B′,△A′B′C即為所求,根據(jù)B′位置得出B′坐標(biāo)即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠ACA′=90°,利用勾股定理可求出AC的長,利用弧長公式求出的長即可.
(1)如圖所示,△A′B′C即為所求;
B′的坐標(biāo)為(﹣1,3).
(2)∵A(3,3),C(0,﹣1).
∴AC==5,
∵∠ACA′=90°,
∴點(diǎn)A經(jīng)過的路徑的長為:=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的邊上一點(diǎn)為圓心的圓,經(jīng)過,兩點(diǎn),且與邊交于點(diǎn),為弧的中點(diǎn),連接交于,,連接.
(1)求證:是的切線;
(2)已知的半徑,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)的圖象交于點(diǎn)和點(diǎn).
(1)當(dāng)時(shí),求反比例函數(shù)的解析式;
(2)已知經(jīng)過原點(diǎn)O的兩條直線AB與CD分別與雙曲線交于A,B和C,D,那么AB與CD互相平分,所以四邊形ACBD是平行四邊形問:平行四邊形ACBD能否成為矩形?能否成為正方形?若能,請說明線段AB,CD的位置關(guān)系;若不能,請說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場試營業(yè)期間,每天運(yùn)營成本為1000元.經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),每天售出的門票張數(shù)(張)與門票售價(jià)(元/張)之間滿足一次函數(shù),設(shè)游樂場每天的利潤為(元).(利潤=票房收入-運(yùn)營成本)
(1)試求與之間的函數(shù)表達(dá)式.
(2)游樂場將門票售價(jià)定為多少元/張時(shí),每天獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy(如圖)中,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(4,0)、B(2,2),與y軸的交點(diǎn)為C.
(1)試求這個(gè)拋物線的表達(dá)式;
(2)如果這個(gè)拋物線的頂點(diǎn)為M,求△AMC的面積;
(3)如果這個(gè)拋物線的對稱軸與直線BC交于點(diǎn)D,點(diǎn)E在線段AB上,且∠DOE=45°,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動點(diǎn),設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每次旋轉(zhuǎn)都以圖中的A、B、C、D、E、F中不同的點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)角度為k90°(k為整數(shù)),現(xiàn)在要將左邊的陰影四邊形正好通過n次旋轉(zhuǎn)得到右邊的陰影四邊形,則n的值可以是( 。
A.n=1可以,n=2,3不可B.n=2可以,n=1,3不可
C.n=1,2可以,n=3不可D.n=1,2,3均可
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,AB=10,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,連接DE,過點(diǎn)B作BP平行于DE,交⊙O于點(diǎn)P,連接CP、OP.
(1)求證:點(diǎn)D為BC的中點(diǎn);
(2)求AP的長度;
(3)求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com