【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:

第一步,分別以點(diǎn)A、D為圓心,以大于AD的長為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;

第二步,連接MN分別交AB、AC于點(diǎn)E、F;

第三步,連接DE、DF.

若BD=6,AF=4,CD=3,則BE的長是(

A.2 B.4 C.6 D.8

【答案】D

【解析】

試題分析:根據(jù)作法可知:MN是線段AD的垂直平分線,AE=DE,AF=DF,∴∠EAD=EDA,AD平分BAC,∴∠BAD=CAD,∴∠EDA=CAD,DEAC,同理DFAE,四邊形AEDF是菱形,AE=DE=DF=AF,AF=4,AE=DE=DF=AF=4,DEAC,BD=6,AE=4,CD=3,,BE=8,故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣2x32+1的頂點(diǎn)坐標(biāo)是(  )

A.(﹣3,1B.31C.1,3D.1,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小馬虎解的一道題.
題目:在同一平面上,若∠BOA=70。 , ∠BOC=15。 , 求∠AOC的度數(shù)。
解:根據(jù)題意畫圖,如右圖所示:
∵∠AOC=∠BOA-∠BOC=70-15。=55。
∴∠A0C=55。

若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),請說明理由;若不會(huì),請將小馬虎的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=﹣x2向左平移2個(gè)單位后,得到的拋物線的解析式是(
A.y=﹣(x+2)2
B.y=﹣x2+2
C.y=﹣(x﹣2)2
D.y=﹣x2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)用鐵絲圍成的籃框,我們來仿制一個(gè)類似的柱體形籃框.如圖2,它是由一個(gè)半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個(gè)缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個(gè)矩形狀框的邊CnDn與點(diǎn)E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.

(1)求d的值;

(2)問:CnDn與點(diǎn)E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果(3ambm+n)327a9b3,那么m·n的值為 ( )

A. 6 B. 6 C. 1 D. l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,再增加條件_____(只需填一個(gè))可使矩形ABCD成為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動(dòng):
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動(dòng)中,兩次購書總共付款229.4元,第二次購書原價(jià)是第一次購書原價(jià)的3倍,那么小麗這兩次購書原價(jià)的總和是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(an) 3=27,則an=__________

查看答案和解析>>

同步練習(xí)冊答案