【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為 x ( x 大于0)秒.

(1)點C表示的數(shù)是;
(2)當 秒時,點P到達點A處?
(3)運動過程中點P表示的數(shù)是(用含字母 的式子表示);
(4)當P,C之間的距離為2個單位長度時,求 x 的值.

【答案】
(1)1
(2)5
(3)?4+2x
(4)解:①當點P在點C左邊時,
∵P、C之間的距離為2個單位長度,

∴點P表示的數(shù)為-1,
∴2x-4=-1,
∴x=.

②當點P在點C右邊時,
∵P、C之間的距離為2個單位長度,

∴點P表示的數(shù)為3,
∴2x-4=3,
∴x=.
綜上所述:當x=時,P,C之間的距離為2個單位長度.


【解析】解:(1)∵點C到點A、點B的距離相等,
∴C為AB的中點,
∴點C表示的數(shù)為:=1.
所以答案是:1.
(2)依題可得:
AB=6-(-4)=10,
∴10÷2=5(秒).
答:但x為5秒時,點P到達點A處.
(3)依題可得:
運動過程中點P表示的數(shù)為:-4+2x.
所以答案是:2x-4.


【考點精析】本題主要考查了數(shù)軸的相關(guān)知識點,需要掌握數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用兩種方法證明“三角形的外角和等于360°”.

如圖,BAE、CBF、ACD是ABC的三個外角.

求證BAE+CBF+ACD=360°.

證法1: ,∴∠BAE+1+CBF+2+ACD+3=180°×3=540°

∴∠BAE+CBF+ACD=540°﹣(1+2+3).

∴∠BAE+CBF+ACD=540°﹣180°=360°.

請把證法1補充完整,并用不同的方法完成證法2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象都經(jīng)過點A(m,2).

(1)求點A的坐標及反比例函數(shù)的表達式;

(2)設(shè)一次函數(shù)的圖象與x軸交于點B,若點P是x軸上一點,且滿足ABP的面積是2,直接寫出點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若正比例函數(shù)y=kx(k為常數(shù),且k≠0)的函數(shù)值y隨著x的增大而減小,則k的值可以是 . (寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司要把3000噸貨物從M市運到W市.(每日的運輸量為固定值)
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)y(單位:噸)與運輸時間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因受到沿線道路改擴建工程影響,實際每天的運輸量比原計劃少20%,以致推遲1天完成運輸任務,求原計劃完成運輸任務的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F、E,且

(1)求證:△ADC∽△EBA;

(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O是△ABC的外接圓,,點D在邊BC上,AE∥BC,AE=BD.

(1)求證:AD=CE;

(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且AEF為等邊三角形

(1)求證:DFB是等腰三角形;

(2)若DA=AF,求證:CFAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二元一次方程2x+y=7的正整數(shù)解有多少組(   )

A. 2 B. 3 C. 5 D. 4

查看答案和解析>>

同步練習冊答案