【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.
(1)證明不論E、F在BC.CD上如何滑動(dòng),總有BE=CF;
(2)當(dāng)點(diǎn)E、F在BC.CD上滑動(dòng)時(shí),分別探討四邊形AECF的面積和△CEF的周長是否發(fā)生變化?如果不變,求出這個(gè)定值;如果變化,求出最小值.
【答案】(1)證明過程見解析;(2)4+2
【解析】
試題分析:(1)連接AC,根據(jù)菱形的性質(zhì)以及∠BAD=120°得出∠BAE=∠FAC以及△ABC和△ACD為正三角形,從而得出△ABE和△ACF全等,從而得出答案;(2)根據(jù)三角形全等得出△ABE的面積=△ACF的面積,從而得出四邊形AECF的面積=△ABC的面積,從而求出△ABC的面積得出四邊形的面積,根據(jù)垂線段最短得出當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短,從而求出最小值.
試題解析:(1)如圖,連接AC∵四邊形ABCD為菱形,∠BAD=120°,
∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC
∵∠BAD=120°,∴∠ABC=60°.∴△ABC和△ACD為等邊三角形
∴∠ACF=60°,AC=AB ∴∠ABE=∠AFC ∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA) ∴BE=CF
(2)四邊形AECF的面積不變,△CEF的周長發(fā)生變化.理由如下:
由(1)得△ABE≌△ACF,則.∴,是定值
作AH⊥BC于H點(diǎn),則BH=2,
.
△CEF的周長=CE+CF+EF=CE+BE+EF=BC+EF=BC+AE
由“垂線段最短”可知:當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.
故△AEF的周長會隨著AE的變化而變化,且當(dāng)AE最短時(shí),△CEF的周長會最小=4+,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(2,0),與y軸相交于點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)E是第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形ABEC的面積最大時(shí),求點(diǎn)E的坐標(biāo),并求出四邊形ABEC的最大面積;
(3)若點(diǎn)M在拋物線上,且在y軸的右側(cè).⊙M與y軸相切,切點(diǎn)為D.以C,D,M為頂點(diǎn)的三角形與△AOC相似,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于受到手機(jī)更新?lián)Q代的影響,某手機(jī)店經(jīng)銷的甲型號手機(jī)二月份售價(jià)比一月份售價(jià)每臺降價(jià)500元.如果賣出相同數(shù)量的手機(jī),那么一月份銷售額為9萬元,二月份銷售額只有8萬元.
(1)求二月份甲型號手機(jī)每臺售價(jià)為多少元?
(2)為了提高利潤,該店計(jì)劃三月份加入乙型號手機(jī)銷售,已知甲型每臺進(jìn)價(jià)為3500元,乙型每臺進(jìn)價(jià)為4000元,預(yù)計(jì)用不多于7.6萬元且不少于7.5萬元的資金購進(jìn)這兩種手機(jī)共20臺,請問有幾種進(jìn)貨方案?
(3)對于(2)中剛進(jìn)貨的20臺兩種型號的手機(jī),該店計(jì)劃對甲型號手機(jī)在二月份售價(jià)基礎(chǔ)上每售出一臺甲型手機(jī)再返還顧客現(xiàn)金a元,乙型手機(jī)按銷售價(jià)4400元銷售,若要使(2)中所有方案獲利相同,a應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD、AB的中點(diǎn),下列結(jié)論:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條公路上順次有、、三地,甲、乙兩車同時(shí)從地出發(fā),分別勻速前柱地、地,甲車到達(dá)地停留一段時(shí)間后原速原路返回,乙車到達(dá)地后立即原速原路返回(掉頭時(shí)間忽略不計(jì)),乙車比甲車早1小時(shí)返回地,甲、乙兩車各自行駛的路程(千米)與時(shí)間(時(shí))(從兩車出發(fā)時(shí)開始計(jì)時(shí))之間的變化情況如圖所示.
(1)在這個(gè)變化過程中,自變量是______,因變量是______.
(2)甲車到達(dá)地停留的時(shí)長為______小時(shí),乙車從出發(fā)到返回地共用了______小時(shí).
(3)甲車的速度是______千米/時(shí),乙車的速度是______千米/時(shí).
(4)、兩地相距______千米,甲車返回地途中與之間的關(guān)系式是______(不必寫出自變量取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知E、F分別為正方形ABCD的邊BC、CD上的點(diǎn),且∠EAF=45°.
(1)如圖①求證:BE+DF=EF;
(2)連接BD分別交AE、AF于M、N,
①如圖②,若AB=6,BM=3,求MN.
②如圖③,若EF∥BD,求證:MN=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】基本圖形:在RT△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE.
探索:(1)連接EC,如圖①,試探索線段BC,CD,CE之間滿足的等量關(guān)系,并證明結(jié)論;
(2)連接DE,如圖②,試探索線段DE,BD,CD之間滿足的等量關(guān)系,并證明結(jié)論;
聯(lián)想:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,則AD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=12cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AC勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)以同樣的速度沿CB的延長線方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,過點(diǎn)P作PE⊥AB于點(diǎn)E,連接PQ交AB于點(diǎn)D.
⑴當(dāng)t為何值時(shí),△CPQ為直角三角形?
⑵求DE的長.
⑶取線段BC的中點(diǎn)M,連接PM,將△CPM沿直線PM翻折,得到△C,PM,連接AC,,當(dāng)t= 時(shí),AC,的值最小,最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com