如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD.

(1)求該拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過(guò)點(diǎn)P的直線PE與y軸交于點(diǎn)E,是否存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等?若存在,請(qǐng)求出直線PE的解析式;若不存在,請(qǐng)說(shuō)明理由.

解:(1)由題意得:OC=4,OD=2,∴DM=OC+OD=6。
∴頂點(diǎn)M坐標(biāo)為(2,6)。
設(shè)拋物線解析式為:y=a(x﹣2)2+6,
∵點(diǎn)C(0,4)在拋物線上,∴4=4a+6,解得a=
∴拋物線的解析式為:y=(x﹣2)2+6=x2+2x+4。
(2)如答圖1,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E.

∵P(x,y),且點(diǎn)P在第一象限,∴PE=y,OE=x。
∴DE=OE﹣OD=x﹣2.
∴S=S梯形PEOC﹣SCOD﹣SPDE=(4+y)•x﹣×2×4﹣(x﹣2)•y=y+2x﹣4。
將y=x2+2x+4代入上式得:S=x2+2x+4+2x﹣4=x2+4x。
在拋物線解析式y(tǒng)=x2+2x+4中,令y=0,即x2+2x+4=0,解得x=2±
設(shè)拋物線與x軸交于點(diǎn)A、B,則B(2+,0)。
∴0<x<2+
∴S關(guān)于x的函數(shù)關(guān)系式為:S=x2+4x(0<x<2+)。
(3)存在。若以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等,可能有以下情形:
①OD=OP。
由圖象可知,OP最小值為4,即OP≠OD,故此種情形不存在。
②OD=OE。
若點(diǎn)E在y軸正半軸上,如答圖2所示,此時(shí)△OPD≌△OPE。

∴∠OPD=∠OPE,即點(diǎn)P在第一象限的角平分線上。
∴直線PE的解析式為:y=x。
若點(diǎn)E在y軸負(fù)半軸上,易知此種情形下,兩個(gè)三角形不可能全等,故不存在。
③OD=PE。
∵OD=2,∴第一象限內(nèi)對(duì)稱軸右側(cè)的點(diǎn)到y(tǒng)軸的距離均大于2。
∴點(diǎn)P只能位于對(duì)稱軸左側(cè)或與頂點(diǎn)M重合。
若點(diǎn)P位于第一象限內(nèi)拋物線對(duì)稱軸的左側(cè),易知△OPE為鈍角三角形,而△OPD為銳角三角形,則不可能全等。
若點(diǎn)P與點(diǎn)M重合,如答圖3所示,此時(shí)△OPD≌OPE,四邊形PDOE為矩形。

∴直線PE的解析式為:y=6。
綜上所述,存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等,直線PE的解析式為y=x或y=6。

解析試題分析:(1)首先求出點(diǎn)M的坐標(biāo),然后利用頂點(diǎn)式和待定系數(shù)法求出拋物線的解析式。
(2)如答圖1所示,作輔助線構(gòu)造梯形,利用S=S梯形PEOC﹣SCOD﹣SPDE求出S關(guān)于x的表達(dá)式;求出拋物線與x軸正半軸的交點(diǎn)坐標(biāo),得到自變量的取值范圍。
(3)由于三角形的各邊,只有OD=2是確定長(zhǎng)度的,因此可以以O(shè)D為基準(zhǔn)進(jìn)行分類(lèi)討論:
①OD=OP,因?yàn)榈谝幌笙迌?nèi)點(diǎn)P到原點(diǎn)的距離均大于4,因此OP≠OD,此種情形排除。
②OD=OE.分析可知,只有如答圖2所示的情形成立。
③OD=PE.分析可知,只有如答圖3所示的情形成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)D,使△BCD的周長(zhǎng)最小?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:

銷(xiāo)售單價(jià)(元)
x
銷(xiāo)售量y(件)
    
銷(xiāo)售玩具獲得利潤(rùn)w(元)
    
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.
(3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M、N分別以每秒1個(gè)單位的速度從點(diǎn)A、D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M、N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求菱形ABCD的周長(zhǎng);
(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;
(3)當(dāng)t=30秒時(shí),在線段OD的垂直平分線上是否存在點(diǎn)P,使得∠DPO=∠DON?若存在,這樣的點(diǎn)P有幾個(gè)?并求出點(diǎn)P到線段OD的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸相交于O、B,頂點(diǎn)為A,連接OA.

(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線向右平移4個(gè)單位,再向下平移2個(gè)單位,得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說(shuō)明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線上,請(qǐng)說(shuō)明理由;
(4)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),試探究在拋物線m上是否存在點(diǎn)Q,使以點(diǎn)O、P、C、Q為頂點(diǎn)的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2 與x軸交于點(diǎn)A(﹣1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)求點(diǎn)C在這條拋物線上時(shí)m的值.
(3)將線段CN繞點(diǎn)N逆時(shí)針旋轉(zhuǎn)90°后,得到對(duì)應(yīng)線段DN.
①當(dāng)點(diǎn)D在這條拋物線的對(duì)稱軸上時(shí),求點(diǎn)D的坐標(biāo).
②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對(duì)稱軸上時(shí),直接寫(xiě)出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點(diǎn).

(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2011年11月28日至12月9日,聯(lián)合國(guó)氣候變化框架公約第17次締約方會(huì)議在南非德班召開(kāi),大會(huì)通過(guò)了“德班一攬子決議”(DurbanPackageOutcome),建立德班增強(qiáng)行動(dòng)平臺(tái)特設(shè)工作組,決定實(shí)施《京都議定書(shū)》第二承諾期并啟動(dòng)綠色氣候基金,中國(guó)的積極態(tài)度贏得與會(huì)各國(guó)的尊重.
在氣候?qū)θ祟?lèi)生存壓力日趨加大的今天,發(fā)展低碳經(jīng)濟(jì),全面實(shí)現(xiàn)低碳生活逐漸成為人們的共識(shí).某企業(yè)采用技術(shù)革新,節(jié)能減排.從去年1至6月,該企業(yè)二氧化碳排放量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間的函數(shù)關(guān)系如下表:

月份x(月)
 
1
 
2
 
3
 
4
 
5
 
6
 
二氧化碳排放量y1(噸)
 
600
 
300
 
200
 
150
 
120
 
100
 
去年7至12月,二氧化碳排放量y2(噸)與月份x(7≤x≤12,且x取整數(shù))的變化情況滿足二次函數(shù)y2=ax2+bx(a≠0),且去年7月和去年8月該企業(yè)的二氧化碳排放量都為56噸.
(1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫(xiě)出y1與x之間的函數(shù)關(guān)系式.并且直接寫(xiě)出y2與x之間的函數(shù)關(guān)系式;
(2)政府為了鼓勵(lì)企業(yè)節(jié)能減排,決定對(duì)每月二氧化碳排放量不超過(guò)600噸的企業(yè)進(jìn)行獎(jiǎng)勵(lì).去年1至6月獎(jiǎng)勵(lì)標(biāo)準(zhǔn)如下,以每月二氧化碳排放量600噸為標(biāo)準(zhǔn),不足600噸的二氧化碳排放量每噸獎(jiǎng)勵(lì)z(元)與月份x滿足函數(shù)關(guān)系式z=x2﹣x(1≤x≤6,且x取整數(shù)),如該企業(yè)去年3月二氧化碳排放量為200噸,那么該企業(yè)得到獎(jiǎng)勵(lì)的噸數(shù)為(600﹣200)噸;去年7至12月獎(jiǎng)勵(lì)標(biāo)準(zhǔn)如下:以每月二氧化碳排放量600噸為標(biāo)準(zhǔn),不足600噸的二氧化碳排放量每噸獎(jiǎng)勵(lì)30元,如該企業(yè)去年7月份的二氧化碳排放量為56噸,那么該企業(yè)得到獎(jiǎng)勵(lì)的噸數(shù)為(600﹣56)噸.請(qǐng)你求出去年哪個(gè)月政府獎(jiǎng)勵(lì)該企業(yè)的資金最多,并求出這個(gè)最多資金;
(3)在(2)問(wèn)的基礎(chǔ)上,今年1至6月,政府繼續(xù)加大對(duì)節(jié)能減排企業(yè)的獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)如下:以每月二氧化碳排放量600噸為標(biāo)準(zhǔn),不足600噸的部分每噸補(bǔ)助比去年12月每噸補(bǔ)助提高m%.在此影響下,該企業(yè)繼續(xù)節(jié)能減排,1至3月每月的二氧化碳排放量都在去年12月份的基礎(chǔ)上減少24噸.4至6月每月的二氧化碳排放量都在去年12月份的基礎(chǔ)上減少m%,若政府今年1至6月獎(jiǎng)勵(lì)給該企業(yè)的資金為162000元,請(qǐng)你參考以下數(shù)據(jù),估算出 m的整數(shù)值.
(參考數(shù)據(jù):322=1024,332=1089,342=1156,352=1225,362=1296)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

點(diǎn)(﹣1,y1),(2,y2),(3,y3)均在函數(shù)y=的圖象上,則y1,y2,y3的大小關(guān)系是( 。

A.y3<y2<y1B.y2<y3<y1
C.y1<y2<y3D.y1<y3<y2

查看答案和解析>>

同步練習(xí)冊(cè)答案