(2005•宜賓)如圖,在平行四邊形ABCD中,點(diǎn)E、F在對(duì)角線AC上,且AE=CF,觀察圖形,以圖中標(biāo)明字母的點(diǎn)為端點(diǎn)添加線段,請(qǐng)你猜想出一個(gè)與你添加有關(guān)的正確結(jié)論,并證明.

【答案】分析:添加的線段為多條,以BE,DF為例,由平行四邊形的性質(zhì)可證△ABE≌△CDF即BE=DF.
解答:解:結(jié)論為BE=DF.證明如下:
如圖,連接DF.
∵在?ABCD中,
AB=CD,∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF.
∴BE=DF.
點(diǎn)評(píng):本題是一道開放性的題,考查了平行四邊形的性質(zhì)和全等三角形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點(diǎn)坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市青春中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點(diǎn)坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案