在Rt△ABC中,∠C=900,D、E分別為AB、BC上的點(diǎn),且BD·AB=BE·BC.

(1)△ABC與△EBD是否相似,為什么?
(2)ED與AB是否垂直,為什么?
(1)△ABC∽△EBD;(2)ED⊥AB

試題分析:(1)由BD·AB=BE·BC可得,再結(jié)合公共角即可證得結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)可得∠EDA=∠C=90°,即可得到結(jié)論.
(1)因?yàn)锽D·AB=BE·BC,
所以.   
在△ABC與△EBD中,
,
∠CBA=∠EBD
所以△ABC∽△EBD;
(2)由△ABC∽△EBD,得∠EDA=∠C=90°,所以ED⊥AB.
點(diǎn)評(píng):相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長(zhǎng)均為1的小正方形網(wǎng)格紙中,△的頂點(diǎn)、均在格點(diǎn)上,且是直角坐標(biāo)系的原點(diǎn),點(diǎn)軸上.

(1)以O(shè)為位似中心,將△放大,使得放大后的△與△對(duì)應(yīng)線段的比為2∶1,畫出△ .(所畫△與△在原點(diǎn)兩側(cè)).
(2)求出線段所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測(cè)量路燈(OS)的高度,把一根長(zhǎng)1.5米的竹竿(AB)豎直立在水平地面上,測(cè)得竹竿的影子(BC)長(zhǎng)為1米,然后拿竹竿向遠(yuǎn)離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測(cè)得竹竿的影長(zhǎng)(BC)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC∽△DEF,且面積比為1 :9,則△ABC與△DEF的周長(zhǎng)比為( )
A.1 :3B.1 :9C.3 :1D.1 :81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點(diǎn)F,BC與AD相交于點(diǎn)G.

(1)求證:BC=DE;
(2)如果∠ABC=∠CBD ,那么線段FD是線段FG和FB的比例中項(xiàng)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

△ADE∽△ABC, AM、AN分別是△ADE和△ABC的高,且周長(zhǎng)分別是5和15,則AM:AN=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn), 
連結(jié)CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.試問:

(1)圖中△APD與哪個(gè)三角形全等?并說明理由.
(2)猜想:線段PC、PE、PF之間存在什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在四邊形中,相交于點(diǎn),AB⊥AC,CD⊥BD.

(1)求證:;
(2)若,,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 點(diǎn)D在邊AC上(不與A,C重合),連結(jié)BD,FBD中點(diǎn).

(1)若過點(diǎn)DDEABE,連結(jié)CF、EFCE,如圖1.設(shè),則k =       ;
(2)若將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn),使得DE、B三點(diǎn)共線,點(diǎn)F仍為BD中點(diǎn),如圖2所示.求證:BE-DE=2CF
(3)若BC=6,點(diǎn)D在邊AC的三等分點(diǎn)處,將線段AD繞點(diǎn)A旋轉(zhuǎn),點(diǎn)F始終為BD中點(diǎn),求線段CF長(zhǎng)度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案