【題目】如圖,將矩形紙片ABCD折疊,使點C與點A重合,折痕EF分別與AB、DC交于點E和點F,AD=12,DC=18.
(1)證明:△ADF≌△AB′E;
(2)求線段AF的長度.
(3)求△AEF的面積.
【答案】(1)見解析;(2)13;(3)78.
【解析】
(1)根據(jù)折疊的性質以及矩形的性質,運用ASA即可判定△ADF≌△AB′E;
(2)先設FA=FC=x,則DF=DC﹣FC=18﹣x,根據(jù)Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18﹣x)2=x2,然后解關于x的值即可;
(3)由S△AEF=AEAD求解即可.
解:(1)∵四邊形ABCD是矩形,
∴∠D=∠C=∠B′=90°,AD=CB=AB′,
∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,
∴∠DAF=∠B′AE,
在△ADF和△AB′E中,,
∴△ADF≌△AB′E(ASA).
(2)由折疊性質得FA=FC,
設FA=FC=x,則DF=DC﹣FC=18﹣x,
在Rt△ADF中,AD2+DF2=AF2,
∴122+(18﹣x)2=x2.
解得x=13.
∵△ADF≌△AB′E(已證),
∴AE=AF=13,
(3)S△AEF=×12×13=78.
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機某天上午全是在東西走向的路上運營,如果規(guī)定向東為正,向西為負,他這天行車里程(單位:千米)如下:
-9,+5,-7,+10,+5,-8,-4,+6,-5,-4
(1)將最后一名乘客送達時,他距出發(fā)地多遠?在出發(fā)地什么方向?
(2)如果每行駛1千米耗油0.4升,每升油7元,他一上午的消耗的油花費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點E.
(1)求證:△ABD≌△EBD;
(2)過點E作EF∥DA,交BD于點F,連接AF.求證:四邊形AFED是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù),當時,函數(shù)有最大值5.
(1)求此二次函數(shù)圖象與坐標軸的交點;
(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點,從左到右,四個交點依次記為,當以為直徑的圓與軸相切時,求的值.
(3)若點是(2)中翻折得到的拋物線弧部分上任意一點,若關于m的一元二次方程 恒有實數(shù)根時,求實數(shù)k的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時出發(fā)勻速前往C地(B在A、C兩地的途中).設甲、乙兩車距A地的路程分別為y甲、y乙(千米),行駛的時間為x(小時),y甲、y乙與x之間的函數(shù)圖象如圖所示.
(1)直接寫出y甲、y乙與x之間的函數(shù)表達式;
(2)如圖,過點(1,0)作x軸的垂線,分別交y甲、y乙的圖象于點M,N.求線段MN的長,并解釋線段MN的實際意義;
(3)在乙行駛的過程中,當甲、乙兩人距A地的路程差小于30千米時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-(k+2)x+2k=0.
(1)求證:k取任何實數(shù)值,方程總有實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用火柴棒按下列方式搭建三角形:
三角形個數(shù) | 1 | 2 | 3 | 4 | … |
火柴棒根數(shù) | 3 | 5 | 7 | 9 | … |
(1)當三角形的個數(shù)為n時,火柴棒的根數(shù)是多少?
(2)求當n=100時,有多少根火柴棒?
(3)當火柴棒的根數(shù)為2017時,三角形的個數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,假命題有( )
①兩點之間線段最短;
②到角的兩邊距離相等的點在角的平分線上;
③過一點有且只有一條直線與已知直線平行;
④垂直于同一直線的兩條直線平行;
⑤若 的弦AB,CD交于點P,則
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結論:
①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結論的是_____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com