【題目】計算:

(1) (2-3; (2) ()2+2×;

(3) ; (4) (-2-4;

(5)(-1)(+1)-(-)2+|1-|-(π-2)0;

(6).

【答案】(1)﹣1;(2)5;(3)5;(4)-6;(5)3-7;(6)+.

【解析】

(1)去括號即可求出答案;(2)開平方之后計算即可得到答案;(3)將原式化簡之后計算即可求出答案;(4)去括號之后再計算從而求出答案;(5)根據(jù)平方差公式以及絕對值的性質(zhì)化簡原式,再計算從而求出答案;(6)化簡原式再計算從而求出答案.

(1)原式=2÷-3÷=8-9=-1;(2)原式=2-2+3+2=5;(3)原式=2+4-=5;(4)原式=×-2×-4×=3-6-2=-6;(5)原式=(2-12-+-1-1+2=5-1-9+3-2=3-7;(6)原式=(2-)-2(--3)=(2-)-2()=+.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.

(1)判斷OEOF的大小關(guān)系?并說明理由?

(2)當點O在邊AC上運動時,四邊形BCFE會是菱形嗎?若是,請證明;若不是,則說明理由;

(3)當點O運動到何處時,四邊形AECF是矩形?并說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近兩年,國際市場黃金價格漲幅較大,中國交通銀行推出沃德金的理財產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價格的上漲中賺取利潤.上周五黃金的收盤價為285/克,下表是本周星期一至星期五黃金價格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)

星期

收盤價的變化(與前一天收盤價比較)

+7

+5

+8

問:(1)本周星期三黃金的收盤價是多少?

(2)本周黃金收盤時的最高價.最低價分別是多少?

(3)上周,小王以周五的收盤價285/克買入黃金1000克,已知買入與賣出時均需支付成交金額的千分之五的交易費,賣出黃金時需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價全部賣出黃金1000克,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算: +( 0+|﹣1|;
(2)先化簡,再求值:(x+2)2+x(2﹣x),其中x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請猜想1+3+5+7+9+…+19=

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知x-1,求x2+3x-1的值;

(2)若|x-4|++(z+27)2=0,求的值;

(3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= , PD=
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,點E、F分別是菱形ABCD邊AD、CD的中點.

(1)求證:BE=BF;

(2)當△BEF為等邊三角形時,的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案