分析 首先根據(jù)平行線的性質(zhì)可得∠BEC=∠DFA,再加上條件∠ADF=∠CBE,AF=CE,可證明△ADF≌△CBE,再根據(jù)全等三角形的性質(zhì)可得BE=DF,根據(jù)一組對邊平行且相等的四邊形是平行四邊形進(jìn)行判定即可.
解答 證明:∵BE∥DF,
∴∠BEC=∠DFA,
在△ADF和△CBE中,
$\left\{\begin{array}{l}{∠ADF=∠CBE}\\{∠AFD=∠CEB}\\{AF=CE}\end{array}\right.$,
∴△ADF≌△CBE(AAS),
∴BE=DF,
又∵BE∥DF,
∴四邊形DEBF是平行四邊形.
點評 此題主要考查了平行四邊形的判定,關(guān)鍵是掌握一組對邊平行且相等的四邊形是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y+1>x-1 | B. | $\frac{x}{3}$>$\frac{y}{3}$ | C. | 1-x>1-y | D. | -3x>-3y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 上 2 | B. | 下 6 | C. | 上 6 | D. | 右 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com