如圖,P是Rt△ABC的斜邊BC上異于B,C的一點(diǎn),過P點(diǎn)作直線截△ABC,使截得的三角形與△ABC相似,滿足這樣條件的直線共有( 。l.
A、1B、2C、3D、4
考點(diǎn):相似三角形的判定
專題:計算題
分析:如圖所示,點(diǎn)P可作AB的垂線PD、AC的垂線PF、BC的垂線PE,加上公共角相等,可得出截得的三角形與△ABC相似.
解答:解:由△ABC是直角三角形,過P點(diǎn)作直線截△ABC,
得到截得的三角形與△ABC有一公共角,
故只要再作一個直角即可使截得的三角形與Rt△ABC相似,
則過點(diǎn)P可作AB的垂線PD、AC的垂線PF、BC的垂線PE,共3條直線.
故選C.
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩枚半徑都為r的硬幣A、B平放到桌面上,將硬幣A固定,硬幣B從硬幣A的邊緣上的一點(diǎn)M出發(fā),沿硬幣A的邊緣滾動一周,回到原來的位置,在滾動過程中,硬幣B轉(zhuǎn)了(  )周.
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BC∥DE,則下列等式成立的是(  )
A、
AD
AE
=
AC
AB
B、
AD
DE
=
AE
BC
C、
AD
DB
=
DE
BC
D、
AD
AB
=
DE
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥AB交BC于F,交AC于E,過點(diǎn)O作OD⊥BC于D,下列四個結(jié)論:
①∠AOB=90°+
1
2
∠C;
②當(dāng)∠C=90°時,E,F(xiàn)分別是AC,BC的中點(diǎn);
③若OD=a,CE+CF=2b,則S△CEF=ab.
其中正確的是(  )
A、①B、②③C、①②D、①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

家庭電話月租金為21元,每次市內(nèi)通話費(fèi)平均為0.3元,每次長途通話費(fèi)平均為1.8元,若半年內(nèi)打市內(nèi)電話m次,打長途電話n次,則半年內(nèi)應(yīng)付話費(fèi)( 。┰
A、0.3m+1.8n
B、21mn
C、21+0.3m+1.8n
D、21×6+0.3m+1.8n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列計算正確的是(  )
A、(x33=x6
B、a6•a4=a24
C、(-mn)4÷(-mn)2=m2n2
D、3a+2a=5a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5x-3
x2-9
=
M
x+3
+
N
x-3
,則M,N分別為( 。
A、M=3,N=2
B、M=2,N=3
C、M=-3,N=2
D、M=-2,N=-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,?ABCD中,AE⊥BC,AF⊥CD,∠EAF=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
(1)
3
x+1
+
1
x-1
=
6
x2-1
;
(2)
1
x-2
+3=
1-x
2-x

查看答案和解析>>

同步練習(xí)冊答案