已知:一元二次方程

(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;

(2)設(shè)k<0,當二次函數(shù)的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;

(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

 

【答案】

解:(1)證明:∵,

∴關(guān)于x的一元二次方程,不論k為何實數(shù)時,此方程總有兩個實數(shù)根。

(2)令y=0,則

,

,即,

解得k=3或k=﹣1。

∵k<0,∴k=﹣1。

∴此二次函數(shù)的解析式是。

(3)由(2)知,拋物線的解析式是,

易求A(﹣1,0),B(3,0),C(1,﹣2),

∴AB=4,AC=2,BC=2

∴AC2+BC2=AB2。

∴△ABC是等腰直角三角形.AB為斜邊。

∴外接圓的直徑為AB=4!喋2≤m≤2。

【解析】(1)根據(jù)一元二次方程的根的判別式△=b2﹣4ac的符號來判定已知方程的根的情況。

(2)利用根與系數(shù)的關(guān)系列出關(guān)于k的方程,通過解方程來求k的值。

(3)根據(jù)直線與圓的位置的位置關(guān)系確定m的取值范圍。 

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

10、已知關(guān)于x一元二次方程ax2+bx+c=0有一個根為1,則a+b+c=
0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:一元二次方程kx2+4x+4=0(k≠0),當k為何值時方程有兩個相等的實數(shù)根( 。
A、k=
1
2
B、k=-
1
2
C、k=1
D、k=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•婁底)已知:一元二次方程
1
2
x2+kx+k-
1
2
=0.
(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;
(2)設(shè)k<0,當二次函數(shù)y=
1
2
x2+kx+k-
1
2
的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如下一元二次方程:
第1個方程:3x2+2x-1=0;
第2個方程:5x2+4x-1=0;
第3個方程:7x2+6x-1=0;

按照上述方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項的排列規(guī)律,則第8個方程為
17x2 +16x-1=0
17x2 +16x-1=0
;第n(n為正整數(shù))個方程為
(2n+1)x2 +2nx-1=0
(2n+1)x2 +2nx-1=0
,其兩個實數(shù)根為
x1=-1,x2=
1
2n+1
x1=-1,x2=
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一個一元二次方程的兩根分別為x1=1,x2=-2,請你寫出符合這兩個根的一個一元二次方程:
x2+x-2=0(答案不唯一).
x2+x-2=0(答案不唯一).

查看答案和解析>>

同步練習冊答案