【題目】一個(gè)點(diǎn)到圓的最小距離為4cm,最大距離為9cm,則該圓的半徑是( )
A. 2.5 cm或6.5 cm
B. 2.5 cm
C. 6.5 cm
D. 5 cm或13cm
【答案】A
【解析】試題分析:點(diǎn)P應(yīng)分為位于圓的內(nèi)部位于外部?jī)煞N情況討論.當(dāng)點(diǎn)P在圓內(nèi)時(shí),點(diǎn)到圓的最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.
解:當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為4cm,最遠(yuǎn)點(diǎn)的距離為9cm,則直徑是13cm,因而半徑是6.5cm;
當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為4cm,最遠(yuǎn)點(diǎn)的距離為9cm,則直徑是5cm,因而半徑是2.5cm.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某綜合實(shí)踐小組為了了解本校學(xué)生參加課外讀書活動(dòng)的情況,隨機(jī)抽取部分學(xué)生,調(diào)查其最喜歡的圖書類別,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表與統(tǒng)計(jì)圖:
請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)隨機(jī)抽取的樣本容量a為 ;
(2)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(3)已知該校有600名學(xué)生,估計(jì)全校最喜歡文學(xué)類圖書的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)載,在“百萬家庭低碳行,垃圾分類要先行”活動(dòng)中,某地區(qū)對(duì)隨機(jī)抽取的1000名公民的年齡段分布情況和對(duì)垃圾分類所持態(tài)度進(jìn)行調(diào)查,并將調(diào)查結(jié)果分別繪成條形圖(圖1)、扇形圖(圖2).
(1)圖2中所缺少的百分?jǐn)?shù)是 ;
(2)這次隨機(jī)調(diào)查中,如果公民年齡的中位數(shù)是正整數(shù),那么這個(gè)中位數(shù)所在年齡段是 ____ (填寫年齡段);
(3)這次隨機(jī)調(diào)查中,年齡段是“25歲以下”的公民中“不贊成”的有5名,它占“25歲以下”人數(shù)的百分?jǐn)?shù)是 ___ ;
(4)如果把所持態(tài)度中的“很贊同”和“贊同”統(tǒng)稱為“支持”,那么這次被調(diào)查公民中“支持”的人有 ____名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的負(fù)半軸上,OC在x軸的正半軸上,OA=2,OC=3,過原點(diǎn)O作∠AOC的平分線交線段AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交線段OA于點(diǎn)E.
(1)求過點(diǎn)E、D、C的拋物線的解析式;
(2)如圖2將∠EDC繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)后,角的一邊與y軸的負(fù)半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G,如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,求證:EF=2GO;
(3)對(duì)于(2)中的點(diǎn)G,在位于第四象限內(nèi)的該跑物像上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)P是對(duì)角線AC上的任意一點(diǎn)(不包括端點(diǎn)),以P為圓心的圓與AB相切,則AD與⊙P的位置關(guān)系是( 。
A. 相離 B. 相切 C. 相交 D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明所在教學(xué)樓的每層高度為3.5米,為了測(cè)量旗桿MN的高度,他在教學(xué)樓一樓的窗臺(tái)A處測(cè)得旗桿頂部M的仰角為45°,他在二樓窗臺(tái)B處測(cè)得M的仰角為31°,已知每層樓的窗臺(tái)離該層的地面高度均為1米,求旗桿MN的高度;(結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com