(2010•宜昌)三峽工程在宜昌.三峽電站2009年發(fā)電798.5億千瓦時(shí),數(shù)據(jù)798.5億用科學(xué)記數(shù)法表示為( )
A.798.5×10
B.79.85×101
C.7.985×102
D.0.7985×103
【答案】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值大于1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).
解答:解:798.5億=7.985×102億.
故選C.
點(diǎn)評:把一個(gè)數(shù)M記成a×10n(1≤|a|<10,n為整數(shù))的形式,這種記數(shù)的方法叫做科學(xué)記數(shù)法.
(1)當(dāng)|a|≥1時(shí),n的值為a的整數(shù)位數(shù)減1;
(2)當(dāng)|a|<1時(shí),n的值是第一個(gè)不是0的數(shù)字前0的個(gè)數(shù),包括整數(shù)位上的0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2010•宜昌)如圖所示,P是△ABC邊AC上的動(dòng)點(diǎn),以P為頂點(diǎn)作矩形PDEF,頂點(diǎn)D,E在邊BC上,頂點(diǎn)F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a,h,且是關(guān)于x的一元二次方程mx2+nx+k=0的兩個(gè)實(shí)數(shù)根,設(shè)過D,E,F(xiàn)三點(diǎn)的⊙O的面積為S⊙O,矩形PDEF的面積為S矩形PDEF
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當(dāng)的值最小時(shí),過點(diǎn)A作BC的平行線交直線BP與Q,這時(shí)線段AQ的長與m,n,k的取值是否有關(guān)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•宜昌)如圖所示,P是△ABC邊AC上的動(dòng)點(diǎn),以P為頂點(diǎn)作矩形PDEF,頂點(diǎn)D,E在邊BC上,頂點(diǎn)F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a,h,且是關(guān)于x的一元二次方程mx2+nx+k=0的兩個(gè)實(shí)數(shù)根,設(shè)過D,E,F(xiàn)三點(diǎn)的⊙O的面積為S⊙O,矩形PDEF的面積為S矩形PDEF
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當(dāng)的值最小時(shí),過點(diǎn)A作BC的平行線交直線BP與Q,這時(shí)線段AQ的長與m,n,k的取值是否有關(guān)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(10)(解析版) 題型:解答題

(2010•宜昌)如圖所示,P是△ABC邊AC上的動(dòng)點(diǎn),以P為頂點(diǎn)作矩形PDEF,頂點(diǎn)D,E在邊BC上,頂點(diǎn)F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a,h,且是關(guān)于x的一元二次方程mx2+nx+k=0的兩個(gè)實(shí)數(shù)根,設(shè)過D,E,F(xiàn)三點(diǎn)的⊙O的面積為S⊙O,矩形PDEF的面積為S矩形PDEF
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當(dāng)的值最小時(shí),過點(diǎn)A作BC的平行線交直線BP與Q,這時(shí)線段AQ的長與m,n,k的取值是否有關(guān)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2010•宜昌)如圖所示,P是△ABC邊AC上的動(dòng)點(diǎn),以P為頂點(diǎn)作矩形PDEF,頂點(diǎn)D,E在邊BC上,頂點(diǎn)F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a,h,且是關(guān)于x的一元二次方程mx2+nx+k=0的兩個(gè)實(shí)數(shù)根,設(shè)過D,E,F(xiàn)三點(diǎn)的⊙O的面積為S⊙O,矩形PDEF的面積為S矩形PDEF
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當(dāng)的值最小時(shí),過點(diǎn)A作BC的平行線交直線BP與Q,這時(shí)線段AQ的長與m,n,k的取值是否有關(guān)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•宜昌)如圖所示,P是△ABC邊AC上的動(dòng)點(diǎn),以P為頂點(diǎn)作矩形PDEF,頂點(diǎn)D,E在邊BC上,頂點(diǎn)F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a,h,且是關(guān)于x的一元二次方程mx2+nx+k=0的兩個(gè)實(shí)數(shù)根,設(shè)過D,E,F(xiàn)三點(diǎn)的⊙O的面積為S⊙O,矩形PDEF的面積為S矩形PDEF
(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;
(2)求的最小值;
(3)當(dāng)的值最小時(shí),過點(diǎn)A作BC的平行線交直線BP與Q,這時(shí)線段AQ的長與m,n,k的取值是否有關(guān)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案