如圖,已知⊙O中,
AB
=
BC
=
CD
,OB、OC分別交AC、BD于E、F.求證:△EOF是等腰三角形.
分析:由于
AB
=
BC
=
CD
,根據(jù)垂徑定理的推論得到OB⊥AC,OC⊥BD,且
AC
=
BD
,即OE和OE為等弦的弦心距,所以O(shè)E=OF,由此可判斷△EOF是等腰三角形.
解答:證明:∵
AB
=
BC
=
CD
,
∴OB⊥AC,OC⊥BD,
AC
=
BD
,
∴OE=OF,
∴△EOF是等腰三角形.
點評:本題考查了圓心角、弧、弦的關(guān)系:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.也考查了垂徑定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖,已知△ABC中,AD⊥BC于D,AD=BD,DC=DE.求證:∠C=∠1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、如圖,已知△ABC中,AB=AC,AB的垂直平分線交AB于D,交AC于E,若△ABC與△EBC的周長分別是26cm、18cm,則AC=
8
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AD=DB,D、E分別為BC、AB上一點,連接DE,∠1=∠2.
(1)求證:△ABC∽△EAD;
(2)若AE=3,AD=4,BC=6,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一點且BP=AC,Q是CF延長線上一點且CQ=AB,連接AP、AQ、QP,求證:
(1)AP=AQ;
(2)AP⊥AQ.

查看答案和解析>>

同步練習(xí)冊答案