在同一平面內(nèi),已知線段AO=2,⊙A的半徑為1,將⊙A繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到的像為⊙B,則⊙A與⊙B的位置關(guān)系為    

 

【答案】

外切。

【解析】∵⊙A繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到的⊙B,

 ∴△OAB為等邊三角形!郃B=OA=2。

∵⊙A、⊙B的半徑都為1,∴AB等于兩圓半徑之和。

∴⊙A與⊙B外切。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長(zhǎng)線于E,∠1=∠2.
求證:AD平分∠BAC,填寫分析和證明中的空白.
分析:要證明AD平分∠BAC,只要證明
∠BAD
=
∠CAD

而已知∠1=∠2,所以應(yīng)聯(lián)想這兩個(gè)角分別和∠1、∠2的關(guān)系,由已知BC的兩條垂線可推出
EF
AD
,這時(shí)再觀察這兩對(duì)角的關(guān)系已不難得到結(jié)論.
證明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面內(nèi),垂直與同一直線的兩直線平行

∠1
=
∠BAD
(兩直線平行,內(nèi)錯(cuò)角相等),
∠2
=
∠CAD
(兩直線平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分線的定義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、補(bǔ)全下列證明過程及括號(hào)內(nèi)的推理依據(jù):
如圖,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E,求證:AD平分∠BAC.
證明:∵AD⊥BC,EF⊥BC(已知).
∴AD∥
EF
(在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行),
∴∠1=∠E(
兩直線平行,同位角相等
),
∠2=∠3(
兩直線平行,內(nèi)錯(cuò)角相等

又∵∠3=∠E(已知),
∴∠1=∠2(等量代換),
∴AD平分∠BAC(
角平分線的定義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、下列命題正確的是:①兩直線不相交就平行;②在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線平行;③同位角相等,那么它們的平分線互相平行;④點(diǎn)到直線的距離就是這個(gè)點(diǎn)到該直線的垂線段;⑤過一點(diǎn)有且只有一條直線與已知直線垂直;⑥如果兩個(gè)角互補(bǔ),那么這兩個(gè)角是鄰補(bǔ)角.正確的命題有:
③⑤
(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•海淀區(qū)二模)已知:點(diǎn)P為線段AB上的動(dòng)點(diǎn)(與A、B兩點(diǎn)不重合).在同一平面內(nèi),把線段AP、BP分別折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三點(diǎn)共線,如圖所示.
(1)若△CDP、△EFP均為等腰三角形,且DF=2,求AB的長(zhǎng);
(2)若AB=12,tan∠C=
43
,且以C、D、P為頂點(diǎn)的三角形和以E、F、P為頂點(diǎn)的三角形相似,求四邊形CDFE的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

木工師傅在鋸木板時(shí),往往先在木板兩端用墨盒彈一根墨線然后再鋸,這樣做的數(shù)學(xué)道理是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案