如圖的平面直角坐標(biāo)系中有一個正六邊形ABCDEF,其中C.D的坐標(biāo)分別為(1,0)和(2,0).若在無滑動的情況下,將這個六邊形沿著x軸向右滾動,則在滾動過程中,這個六邊形的頂點(diǎn)A.B.C.D.E、F中,會過點(diǎn)(45,2)的是點(diǎn)  

考點(diǎn):正多邊形和圓;坐標(biāo)與圖形性質(zhì);旋轉(zhuǎn)的性質(zhì)。

專題:規(guī)律型。

分析:先連接A′D,過點(diǎn)F′,E′作F′G⊥A′D,E′H⊥A′D,由正六邊形的性質(zhì)得出A′的坐標(biāo),再根據(jù)每6個單位長度正好等于正六邊形滾動一周即可得出結(jié)論.

解答:解:如圖所示:

當(dāng)滾動一個單位長度時E、F、A的對應(yīng)點(diǎn)分別是E′、F′、A′,連接A′D,點(diǎn)F′,E′作F′G⊥A′D,E′H⊥A′D,

∵六邊形ABCD是正六邊形,

∴∠A′F′G=30°,

∴A′G=A′F′=,同理可得HD=,

∴A′D=2,

∵D(2,0)

∴A′(2,2),OD=2,

∵正六邊形滾動6個單位長度時正好滾動一周,

∴從點(diǎn)(2,2)開始到點(diǎn)(45,2)正好滾動43個單位長度,

=7…1,

∴恰好滾動7周多一個,

∴會過點(diǎn)(45,2)的是點(diǎn)B.

故答案為:B.

點(diǎn)評:本題考查的是正多邊形和圓及圖形旋轉(zhuǎn)的性質(zhì),根據(jù)題意作出輔助線,利用正六邊形的性質(zhì)求出A′點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高
209
m,與籃圈中心的水平距離7m.當(dāng)球出手后水平距離為4m時到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標(biāo)系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準(zhǔn)確投中?
(3)此時,若對方隊員乙在甲前面2m 處跳起蓋帽攔截,已知乙的最大摸高為3.lm,那么他能否攔截成功?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現(xiàn)將Rt△ADC繞點(diǎn)C順時針旋轉(zhuǎn)90°,點(diǎn)A旋轉(zhuǎn)后的位置為點(diǎn)E,點(diǎn)D旋轉(zhuǎn)后的位置為點(diǎn)F.以C為原點(diǎn),以BC所在直線為x軸,以過點(diǎn)C垂直于BC的直線為y軸,建立如圖②的平面直角坐標(biāo)系.

(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負(fù)半軸平行移動,如圖③.設(shè)OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;求當(dāng)x=1與x=8時,s的值;
(3)在(2)的條件下s是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將邊長為4的正方形在如圖的平面直角坐標(biāo)系中.點(diǎn)P是OA上的一個動點(diǎn),且從點(diǎn)O向點(diǎn)A運(yùn)動.連接CP交對角線OB于點(diǎn)D,連接AD.
(1)求證:△OCD≌△OAD;
(2)若△OCD的面積是四邊形OABC面積的
16
,求P點(diǎn)的坐標(biāo);
(3)若點(diǎn)P從點(diǎn)O運(yùn)動到點(diǎn)A后,再繼續(xù)從點(diǎn)A運(yùn)動到點(diǎn)B,在整個運(yùn)動過程中,當(dāng)△OCD恰為等腰三角形時,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的平面直角坐標(biāo)系中,依次描出下列各點(diǎn):
(0,2),(5,6),(3,2),(5,3),(5,1),(3,2),(4,0),(0,2).
再用線段順次連接各點(diǎn),得到一個圖形象
一條魚
一條魚

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)△ABC在如圖的平面直角坐標(biāo)系中,將其平移得到△A'B'C',若B的對應(yīng)點(diǎn)B′的坐標(biāo)為(1,1);
(1)在圖中畫出△A′B′C′;
(2)此次平移可以看作將△ABC向
 
平移
 
個單位長度,再向
 
平移
 
個單位長度,得△A′B′C′;
(3)直接寫出△A′B′C′的面積為
 

查看答案和解析>>

同步練習(xí)冊答案