如圖,分別以含45°角的三角尺的兩個銳角的頂點為圓心,以直角邊長為半徑作弧,如B、D、C、E在一直線上,則弧長=______倍弧長.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在平面直角坐標系內(nèi),直線y=
3
4
x上有一點A,AD⊥x軸于D,且AD=3,C是x軸上的一點,AC⊥AO,長度等于OD的線段EF在x軸上沿OC方向以1/s的速度向點C運動(運動前EF和OD重合,當F點與C重合時停止運動,包括起點、終點),過E,F(xiàn)分別作OC的垂線交直角邊于點P、點Q,連接線段PD,QD,PQ,PQ交線段AD于點M,若設(shè)EF運動的時間為t(s).
(1)寫出A點坐標
 
.PE=
 
(用含t的代數(shù)式表示線段),其中自變量t的取值范圍為
 
;
(2)是否存在t的值,使得線段PD⊥QD?若存在,請求出相應(yīng)的t的值,若不精英家教網(wǎng)存在,請說明理由;
(3)①當t=
4
5
秒時,線段AM=
 
;
②求線段AM關(guān)于自變量t的函數(shù)解析式,并求出AM的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•門頭溝區(qū)一模)閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正方形ABCD中,點E、F分別為DC、BC邊上的點,∠EAF=45°,連接EF,求證:DE+BF=EF.

小偉是這樣思考的:要想解決這個問題,首先應(yīng)想辦法將這些分散的線段集中到同一條線段上.他先后嘗試了平移、翻折、旋轉(zhuǎn)的方法,發(fā)現(xiàn)通過旋轉(zhuǎn)可以解決此問題.他的方法是將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG(如圖2),此時GF即是DE+BF.
請回答:在圖2中,∠GAF的度數(shù)是
45°
45°

參考小偉得到的結(jié)論和思考問題的方法,解決下列問題:
(1)如圖3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,若∠BAE=45°,DE=4,則BE=
58
7
58
7

(2)如圖4,在平面直角坐標系xOy中,點B是x軸上一動點,且點A(-3,2),連接AB和AO,并以AB為邊向上作正方形ABCD,若C(x,y),試用含x的代數(shù)式表示y,則y=
x+1
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1:y=-x+8與x軸、y軸分別交于點A和點B,直線l2:y=x與直線l1交于點C,平行于y軸的直線m從原點O出發(fā),以每秒1個單位長度的速度沿x軸向右平移,到C點時停止.直線m交線段BC、OC于點D、E,以DE為斜邊向左側(cè)作等腰Rt△DEF,設(shè)△DEF與△BCO重疊部分的面積為S(平方單位),直線m的運動時間為t(秒).
(1)填空:OA=
8
8
,∠OAB=
45°
45°

(2)填空:動點E的坐標為(t,
t
t
),DE=
8-2t
8-2t
(用含t的代數(shù)式表示);
(3)求S與t的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(4)設(shè)直線m與OA交于點P,是否存在這樣的點P,使得P、O、F為頂點的三角形為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

如圖,分別以含45°角的三角尺的兩個銳角的頂點為圓心,以直角邊長為半徑作弧,如B、D、C、E在一直線上,則弧長=______倍弧長.

查看答案和解析>>

同步練習冊答案