【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.

(1)將圖1中△A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45°得圖2,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;

(2)在圖2中,若AP1=a,則CQ等于多少?

(3)將圖2中△A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△A2B2C(如圖3),點(diǎn)P2是A2C與AP1的交點(diǎn).當(dāng)旋轉(zhuǎn)角為多少度時(shí),有△AP1C∽△CP1P2?這時(shí)線段CP1與P1P2之間存在一個(gè)怎樣的數(shù)量關(guān)系?

【答案】(1)證明見解析;(2)CQ=a;(3)當(dāng)∠P1CP2=∠P1AC=30°時(shí), P1P2CP1

【解析】試題分析:(1)根據(jù)△A1B1C和△ABC是兩個(gè)完全一樣的三角形,順時(shí)針旋轉(zhuǎn)45°兩個(gè)條件證明△B1CQ≌△BCP1,然后可求證:CP1=CQ;

(2)作P1D⊥AC于D,根據(jù)∠A=30,∠P1CD=45°分別求出P1D=AP1,CP1=P1D=AP1,而AP1=a可求CQ.

(3)當(dāng)△A P1C∽△CP1P2時(shí),∠P1CP2=∠P1AC=30°,再根據(jù)相似求出CP1與P1P2之間存在的數(shù)量關(guān)系;

試題解析:

(1)∵∠B1CB=45°,∠B1CA1=90°,

∴∠B1CQ=∠BCP1=45°;

又B1C=BC,∠B1=∠B,

∴△B1CQ≌△BCP1(ASA)

∴CQ=CP1;

(2)如圖:作P1D⊥AC于D,

∵∠A=30°,

∴P1D=AP1;

∵∠P1CD=45°,

=sin45°=

∴CP1=P1D=AP1;

又AP1=a,CQ=CP1,

∴CQ=a;

(3)當(dāng)∠P1CP2=∠P1AC=30°時(shí),由于∠CP1P2=∠AP1C,則△AP1C∽△CP1P2,

所以將圖2中△A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°到△A2B2C時(shí),有△AP1C∽△CP1P2

這時(shí)==,

∴P1P2=CP1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ab是方程x2+x-2020=0的兩個(gè)不等實(shí)根,則a2+2a+b的值是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個(gè)點(diǎn)A1 , A2 , A3 , …An , 從第1個(gè)點(diǎn)A1開始沿直線滑動(dòng)到另一個(gè)點(diǎn),且同時(shí)滿足以下三個(gè)條件:①每次滑動(dòng)的距離都盡可能最大;②n次滑動(dòng)將每個(gè)點(diǎn)全部到達(dá)一次;③滑動(dòng)n次后必須回到第1個(gè)點(diǎn)A1 , 我們稱此滑動(dòng)為“完美運(yùn)動(dòng)”,且稱所有點(diǎn)為“完美運(yùn)動(dòng)”的滑動(dòng)點(diǎn),記完成n個(gè)點(diǎn)的“完美運(yùn)動(dòng)”的路程之和為Sn
(1)如圖1,滑動(dòng)點(diǎn)是邊長為a的等邊三角形三個(gè)頂點(diǎn),此時(shí)S3=;

(2)如圖2,滑動(dòng)點(diǎn)是邊長為a,對(duì)角線(線段A1A2、A2A4)長為b的正方形四個(gè)頂點(diǎn),此時(shí)S4=
【深入研究】
現(xiàn)有n個(gè)點(diǎn)恰好在同一直線上,相鄰兩點(diǎn)距離都為1,

(3)如圖3,當(dāng)n=3時(shí),直線上的點(diǎn)分別為A1、A2、A3
為了完成“完美運(yùn)動(dòng)”,滑動(dòng)的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1
①其中正確的方法為
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運(yùn)動(dòng)”的S3=


(4)當(dāng)n分別取4,5時(shí),對(duì)應(yīng)的S4= , S5=
(5)若直線上有n個(gè)點(diǎn),請(qǐng)用含n的代數(shù)式表示Sn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愷桐超市購進(jìn)一批四階魔方,按進(jìn)價(jià)提高40%后標(biāo)價(jià),為了讓利于民,增加銷量,超市決定打八折出售,這時(shí)每個(gè)魔方的售價(jià)為28元.
(1)求魔方的進(jìn)價(jià)?
(2)超市賣出一半后,正好趕上雙十一促銷,商店決定將剩下的魔方以每3個(gè)80元的價(jià)格出售,很快銷售一空,這批魔方超市共獲利2800元,求該超市共購進(jìn)四階魔方多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD,AB的中點(diǎn).下列結(jié)論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x2﹣4x=5時(shí),此方程可變形為(
A.(x+2)2=1
B.(x﹣2)2=1
C.(x+2)2=9
D.(x﹣2)2=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)角的度數(shù)為31°42′,那么它的補(bǔ)角的度數(shù)為°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(x+8)(x﹣1)=﹣5化成一般形式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、△BCE、△ACF,當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?(
A.AB=AC
B.∠BAC=90°
C.∠BAC=120°
D.∠BAC=150°

查看答案和解析>>

同步練習(xí)冊(cè)答案