精英家教網(wǎng)如圖,⊙O1、⊙O2相交于點(diǎn)A、B,現(xiàn)給出4個命題:
(1)若AC是⊙O2的切線且交⊙O1于點(diǎn)C,AD是⊙O1的切線且交⊙O2于點(diǎn)D,則AB2=BC•BD;
(2)連接AB、O1O2,若O1A=15cm,O2A=20cm,AB=24cm,則O1O2=25cm;
(3)若CA是⊙O1的直徑,DA是⊙O2的一條非直徑的弦,且點(diǎn)D、B不重合,則C、B、D三點(diǎn)不在同一條直線上;
(4)若過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)D,直線DB交⊙O1于點(diǎn)C,直線CA交⊙O2于點(diǎn)E,連接DE,則DE2=DB•DC.
則正確命題的序號是
 
.(在橫線上填上所有正確命題的序號)
分析:(1)根據(jù)弦切角定理可以證明:∠BAD=∠C,∠BAC=∠D,則△ABD∽△CBA,從而證明結(jié)論;
(2)根據(jù)相交兩圓的連心線垂直平分兩圓的公共弦,再結(jié)合勾股定理,即可計算;
(3)根據(jù)直徑所對的圓周角是直角,則∠ABC=90°,∠ABD≠90°,則∠CBD≠180°;
(4)根據(jù)切割線定理,得到DA2=DB•DC,所以只需證明DA=DE,即∠DAE=∠AED.
連接AB,根據(jù)弦切角定理和圓周角定理的推論,以及三角形的外角的性質(zhì),可以證明.
解答:精英家教網(wǎng)解:(1)∵AC是⊙O2的切線且交⊙O1于點(diǎn)C,AD是⊙O1的切線且交⊙O2于點(diǎn)D,
∴∠BAD=∠C,∠BAC=∠D,
∴△ABD∽△CBA,
AB
BC
=
BD
AB
,
∴AB2=BC•BD;

精英家教網(wǎng)(2)∵O1O2垂直平分AB,
∴AC=BC=12,
根據(jù)勾股定理,得:
O1C=9,O2C=15,
∴O1O2=24;

精英家教網(wǎng)(3)∵CA是⊙O1的直徑,DA是⊙O2的一條非直徑的弦,
∴∠ABC=90°,∠ABD≠90°,
∴∠CBD≠180°,
∴C、B、D三點(diǎn)不在同一條直線上;

(4)連接AB,
精英家教網(wǎng)根據(jù)切割線定理,得DA2=DB•DC;
∵AD切⊙O1于A,
∴∠BAD=∠C,
又∵∠DAE=∠C+∠ADC,∠ABC=∠BAD+∠ADC,
∴∠DAE=∠ABC;
∵四邊形ABDE是圓內(nèi)接四邊形,
∴∠ABC=∠E,
∴∠DAE=∠E,
∴DE=AD,
∴DE2=DB•DC.
故正確的有(1)(2)(3)(4).
點(diǎn)評:連接公共弦是相交兩圓常見的輔助線之一.綜合運(yùn)用切割線定理、弦切角定理、圓周角定理的推論.掌握相似三角形的性質(zhì)和判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2外切于點(diǎn)P,外公切線AB切⊙O1于點(diǎn)A,切⊙O2于點(diǎn)B,
(1)求證:AP⊥BP;
(2)若⊙O1與⊙O2的半徑分別為r和R,求證:
AP2
BP2
=
r
R

(3)延長AP交⊙O2于C,連接BC,若r:R=2:3,求tan∠C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1,⊙O2,⊙O3,⊙O4,⊙O的半徑均為2cm,⊙O與⊙O1,⊙O3相外切,⊙O與⊙O2,⊙O4相外切,并且圓心分別位于兩條互相垂直的直線L1,L2上,連接O1,O2,O3,O4得四邊形O1O2O3O4,則圖中陰影部分的面積為
 
cm2.(π≈3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn),經(jīng)過A的直線CD與⊙O1交于點(diǎn)C、與⊙O2交于點(diǎn)D,經(jīng)過點(diǎn)B的直線EF與⊙O1交于點(diǎn)E、與⊙O2交于點(diǎn)F,連接CE、DF.若∠AO1E=100°,則∠D的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•南京)如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,⊙O2的弦AB經(jīng)過⊙O1的圓心O1,交⊙O1于點(diǎn)C、D,若AC:CD:BD=3:4:2,則⊙O1與⊙O2的直徑之比為( 。

查看答案和解析>>

同步練習(xí)冊答案