已知點(diǎn)A(a,y1)、B(2a,y2)、C(3a,y3)都在拋物線(xiàn)y=5x2+12x上.
(1)求拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo);
(2)當(dāng)a=1時(shí),求△ABC的面積;
(3)是否存在含有y1,y2,y3,且與a無(wú)關(guān)的等式?如果存在,試給出一個(gè),并加以證明;如果不存在,說(shuō)明理由.
【答案】分析:(1)令y=0,得出的關(guān)于x的二元一次方程的解就是拋物線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo),也就求得出了拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo).
(2)當(dāng)a=1時(shí),根據(jù)拋物線(xiàn)的解析式求出A、B、C三點(diǎn)的坐標(biāo),由于三角形的面積無(wú)法直接求出,因此通過(guò)作輔助線(xiàn)用其他規(guī)則圖形的面積的“和,差”關(guān)系來(lái)求.如:分別過(guò)點(diǎn)A、B、C作x軸的垂線(xiàn),垂足分別為D、E、F,S△ABC=S梯形ADFC-S梯形ADEB-S梯形BEFC由此可求出△ABC的面積.
(3)可將A、B、C三點(diǎn)的坐標(biāo)代入拋物線(xiàn)中,得出y1,y2,y3的值,然后進(jìn)行比較即可得出它們之間的和差或倍數(shù)關(guān)系.
解答:解:(1)由5x2+12x=0,
得x1=0,
∴拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)為(0,0)、(,0).

(2)當(dāng)a=1時(shí),得A(1,17)、B(2,44)、C(3,81),
分別過(guò)點(diǎn)A、B、C作x軸的垂線(xiàn),垂足分別為D、E、F,
則有S△ABC=S梯形ADFC-S梯形ADEB-S梯形BEFC
=--=5(個(gè)單位面積)

(3)如:y3=3(y2-y1).
事實(shí)上,y3=5×(3a)2+12×(3a)=45a2+36a.
3(y2-y1)=3[5×(2a)2+12×2a-(5a2+12a)]=45a2+36a.
∴y3=3(y2-y1).
點(diǎn)評(píng):本題主要考查了二次函數(shù)的應(yīng)用,根據(jù)拋物線(xiàn)的解析式來(lái)確定A、B、C三點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,y1)、B(1,y2)、C(2,y3)都在雙曲線(xiàn)y=
kx
(k>0)上,則y1、y2、y3按從小到大的順序排列為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,y1),B(4,y2)在二次函數(shù)y=-3x2的圖象上,則y1
 y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,y1)和B(x2,y2)是反比例函數(shù)y=
k
x
上兩點(diǎn),x1<x2,則下列說(shuō)法中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-3,y1),B(-2,y2),C(3,y3)都在反比例函數(shù)y=
4
x
的圖象上,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,y1),B(-
2
,y2
),C(-2,y3)在函數(shù)y=
1
2
x2-
1
2
的圖象上,則y1、y2、y3的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案