(9分)我們把對稱中心重合,四邊分別平行的兩個正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個交點、、.小明在探究線段 的數(shù)量關系時,從點、向對邊作垂線段,利用三角形全等、相似及銳角三角函數(shù)等相關知識解決了問題.請你參考小明的思路解答下列問題:

⑴當直線l與方形環(huán)的對邊相交時(如圖1),直線l分別交、、、、、、,小明發(fā)現(xiàn)相等,請你幫他說明理由;

⑵當直線l與方形環(huán)的鄰邊相交時(如圖2),l分別交、、、,l的夾角為,你認為還相等嗎?若     相等,說明理由;若不相等,求出的值(用含的三角函數(shù)表示).

 

【答案】

⑴解:   在方形環(huán)中,

       

       

         ∴△≌△

                       ·········· 3分

 

 ⑵解法一:

   ∴          

     

      

      (或

①當時,tan=1,

 ②當時,

  (或    

解法二:在方形環(huán)中,

       又∵

        

        

      中,

     

      

        (或)   

 ①當時,

 ②當時,

  (或      ………………9

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們把對稱中心重合,四邊分別平行的兩個正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.一條直線l與方形環(huán)的邊線有四個交點M、M′、N′、N、小明在探究線段MM′與N′N的數(shù)量關系時,從點M′、N′向對邊作垂線段M′E、N′F,利用三角形全等、相似及銳角三角函數(shù)等相關知識解決了問題、請你參考小明的思路解答下列問題:
(1)當直線l與方形環(huán)的對邊相交時(如圖1),直線l分別交AD、A′D'、B′C′、BC于M、M′、N′、N,小明發(fā)現(xiàn)MM′與N′N相等,請你幫他說明理由;
(2)當直線l與方形環(huán)的鄰邊相交時(如圖2),l分別交AD、A′D′、D′C′、DC于M、M′、N′、N,l與DC的夾角為α,你認為MM′與N′N還相等嗎?若相等,說明理由;若不相等,求出
MM′N′N
的值(用含α的三角函數(shù)表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)我們把對稱中心重合,四邊分別平行的兩個正方形之間的部分叫“方形環(huán)”,已知方形環(huán)四周的寬度相等,如圖,若直線l分別交方形環(huán)的鄰邊AD、A'D'、D'C'、DC于點M、M'、N'、N,且M為AD的中點,DN=3CN,則線段MM'與NN'的長度之比為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(9分)我們把對稱中心重合,四邊分別平行的兩個正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個交點、.小明在探究線段 的數(shù)量關系時,從點向對邊作垂線段、,利用三角形全等、相似及銳角三角函數(shù)等相關知識解決了問題.請你參考小明的思路解答下列問題:
⑴當直線l與方形環(huán)的對邊相交時(如圖1),直線l分別交、、、、、,小明發(fā)現(xiàn)相等,請你幫他說明理由;
⑵當直線l與方形環(huán)的鄰邊相交時(如圖2),l分別交、、、、l的夾角為,你認為還相等嗎?若    相等,說明理由;若不相等,求出的值(用含的三角函數(shù)表示).

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省第三初級中學九年級課程結束考試數(shù)學卷 題型:解答題

(9分)我們把對稱中心重合,四邊分別平行的兩個正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個交點、、.小明在探究線段 的數(shù)量關系時,從點向對邊作垂線段、,利用三角形全等、相似及銳角三角函數(shù)等相關知識解決了問題.請你參考小明的思路解答下列問題:
⑴當直線l與方形環(huán)的對邊相交時(如圖1),直線l分別交、、、、,小明發(fā)現(xiàn)相等,請你幫他說明理由;
⑵當直線l與方形環(huán)的鄰邊相交時(如圖2),l分別交、、、、l的夾角為,你認為還相等嗎?若    相等,說明理由;若不相等,求出的值(用含的三角函數(shù)表示).

查看答案和解析>>

同步練習冊答案