【題目】如圖,在平面直角坐標系中,點,的坐標分別為,,過,,三點作圓,點在第一象限部分的圓上運動,連結,過點作的垂線交的延長線于點,下列說法:①;②;③的最大值為10.其中正確的是( )
A. ①②B. ②③C. ①③D. ①②③
【答案】C
【解析】
連接AB,由題意得AB為圓的直徑,根據同角的余角相等可得∠AOC=∠BOD,根據圓周角定理得∠OCB=∠OAB,可推出∠OBA=∠D,根據勾股定理求出AB,可出sin∠D的值,證出△OCD∽△OAB,則 ,OC取最大值等于直徑時CD的值最大.
解:連接AB,
∵∠DOC=90°,∠BOA=90°,
∴∠BOD+∠BOC=90°,∠AOC+∠BOC =90°,
∴∠AOC=∠BOD,①正確;
∵∠DOC=90°,∠BOA=90°,
∴∠OCB+∠D=90°,∠OAB+∠OBA =90°,
∵∠OCB=∠OAB,
∴∠OBA=∠D,
∵OA=2,OB=4,AB= ,
∴sin∠D=sin∠OBA= ,②錯誤;
∵∠DOC=∠BOA=90°,∠OCB=∠OAB,
∴△OCD∽△OAB,
∴
∵∠BOA=90°,
∴AB為圓的直徑,
∴OC取最大值等于直徑AB時CD的值最大,
∴CD的最大值 ,③正確.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,點P從A點出發(fā),以1cm/s的速度向B點移動,點Q從B點出發(fā),以2cm/s的速度向C點移動.如果P、Q兩點同時出發(fā),經過幾秒后△PBQ的面積等于4cm2?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結論:①;②;③對于任意實數m,總成立;④關于的方程有兩個不相等的實數根.其中結論正確的個數為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現如圖2,固定△ABC,使△DEC繞點C旋轉。當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是 ;
② 設△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數量關系是 。
(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應的BF的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚我國古代數學發(fā)展的偉大成就,某校九年級進行了一次數學知識競賽,并設立了以我國古代數學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:
“祖沖之獎”的學生成績統(tǒng)計表:
分數分 | 80 | 85 | 90 | 95 |
人數人 | 4 | 2 | 10 | 4 |
根據圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數是多少分,眾數是多少分;
在這次數學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數字“”,“”和“2”,隨機摸出一個小球,把小球上的數字記為x放回后再隨機摸出一個小球,把小球上的數字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤與投資金額成正比例關系,如圖1所示;種植花卉的利潤與投資金額成二次函數關系,如圖2所示.(注:利潤與投資金額的單位均為萬元)
(1)分別求出利潤與關于投資金額的函數關系;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉的金額是萬元,求這位專業(yè)戶能獲取的最大總利潤是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲樓AB高20m,乙樓CD高10m,兩棟樓之間的水平距離BD=20m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF.(參考數據:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.4,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小芳在本學期的體育測試中,1分鐘跳繩獲得了滿分,她的“滿分秘籍”如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內跳繩速度y(個/秒)與時間t(秒)關系的函數圖象大致為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,點A的坐標(﹣8,0),點C在線段AO上以每秒2個單位長度的速度由A向O運動,運動時間為t秒,連接BC,過點A作AD⊥BC,垂足為點E,分別交BO于點F,交y軸于點 D.
(1)用t表示點D的坐標 ;
(2)如圖1,連接CF,當t=2時,求證:∠FCO=∠BCA;
(3)如圖2,當BC平分∠ABO時,求t的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com