已知如圖,菱形ABCD中,∠ADC=120°,BD=2
6
cm,
(1)求AC的長;
(2)寫出A、B、C、D的坐標.
分析:(1)由題意可得∠ADO=60°,在RT△ADO中求出AO,從而可得出AC的長度;
(2)根據(jù)OD、OB、OC、OA的長度,結(jié)合直角坐標系即可得出四點坐標.
解答:解:(1)∵四邊形ABCD是菱形,∠ADC=120°,BD=2
6
cm,
∴∠ADO=60°,DO=BO=
1
2
BD=
6
cm,
在RT△ADO中,AO=DOtan∠ADO=3
2
cm,
故AC=2AO=6
2
cm;

(2)由(1)可得,OB=OD=
6
,OA=OC=3
2
,
故可得點A(-3
2
,0),點B(0,-
6
),點C(3
2
,0),點D(0,
6
).
點評:此題考查了菱形的性質(zhì)及勾股定理的知識,屬于基礎題,掌握菱形的對角線互相垂直平分是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、AE恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市通州區(qū)九年級中考一模數(shù)學卷(帶解析) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市通州區(qū)九年級中考一模數(shù)學卷(解析版) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北京市通州區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

查看答案和解析>>

同步練習冊答案