【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是 .
【答案】
【解析】解:如圖所示,設(shè)BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB= BC= x,
根據(jù)題意得:AD=BC=x,AE=DE=AB= x,
如圖,作EM⊥AD于M,則AM= AD= x,
在Rt△AEM中,cos∠EAD= = = ,
故答案為: .
設(shè)BC=x,由含30°角的直角三角形的性質(zhì)得出AC=2BC=2x,求出AB= x,根據(jù)題意得出AD=BC=x,AE=DE=AB= x,作EM⊥AD于M,由等腰三角形的性質(zhì)得出AM= x,在Rt△AEM中,由三角函數(shù)的定義即可得出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足若 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長(zhǎng);
(3)求tan∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,AB=5, AE平分∠DAB交BC所在直線于點(diǎn)E,CE=2,則AD=_______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AF∥DE,B為AF上一點(diǎn),∠ABC=60°,交ED于C,CM平分∠BCE,∠MCN=90°.
(1)求∠DCN的度數(shù);
(2)若∠CBF的平分線交CN于N,求證:BN∥CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)為了了解孩子們對(duì)《中國(guó)詩(shī)詞大會(huì)》、《挑戰(zhàn)不可能》、《最強(qiáng)大腦》、《超級(jí)演說(shuō)家》、《地理中國(guó)》五種電視節(jié)目的喜愛(ài)程度,隨機(jī)在七、八、九年級(jí)抽取了部分學(xué)生進(jìn)行調(diào)查(每人只能選擇一種喜愛(ài)的電視節(jié)目),并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次調(diào)查中共抽取了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,喜愛(ài)《地理中國(guó)》節(jié)目的人數(shù)所在的扇形的圓心角是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘗試探究并解答:
(1)為了求代數(shù)式x2+2x+3的值,我們必須知道x的值,若x=1,則這個(gè)代數(shù)式的值為 ;若x=2,則這個(gè)代數(shù)式的值為 ,可見(jiàn),這個(gè)代數(shù)式的值因x的取值不同而 (填“變化”或“不變”).盡管如此,我們還是有辦法來(lái)考慮這個(gè)代數(shù)式的值的范圍.
(2)本學(xué)期我們學(xué)習(xí)了形如a2+2ab+b2及a2﹣2ab+b2的式子,我們把這樣的多項(xiàng)式叫做“完全平方式”在運(yùn)用完全平方公式進(jìn)行因式分解時(shí),關(guān)鍵是判斷這個(gè)多項(xiàng)式是不是一個(gè)完全平方式同樣地,把一個(gè)多項(xiàng)式進(jìn)行部分因式分解可以解決代數(shù)式的最大(或最小)值問(wèn)題例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因?yàn)?/span>(x+1)2≥0,所以(x+1)2+2≥2,所以這個(gè)代數(shù)式x2+2x+3有最小值是2,這時(shí)相應(yīng)的x的值是 .
(3)猜想:①4x2﹣12x+13的最小值是 ;
②﹣x2﹣2x+3有 值(填“最大”或“最小”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)平面中,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(20,0),點(diǎn)B在第一象限內(nèi),BO=10,sin∠BOA= .
(1)①在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫(xiě)作法但需保留作圖痕跡);②求點(diǎn)B的坐標(biāo)與cos∠BAO的值;
(2)若A,O位置不變,將點(diǎn)B沿 軸正半軸方向平移使得△ABO為等腰三角形,請(qǐng)直接寫(xiě)出平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一道題,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問(wèn)幾何步及之?”意思是:同樣時(shí)間段內(nèi),走路快的人能走100步,走路慢的人只能走60步(兩人的步長(zhǎng)相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(兩人走的路線相同)?試求解這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=8厘米,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)M在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)N在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),若使△BDM與△CMN全等,則點(diǎn)N的運(yùn)動(dòng)速度應(yīng)為_____厘米/秒.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com