點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,A是OD的中點(diǎn),且AB=AD.
(1)求證:BD是⊙O的切線(xiàn).
(2)如果⊙O的半徑為1,弦AE∥BD,cos∠AEB=,求陰影部分的面積.

【答案】分析:(1)根據(jù)已知求出AB=AD=OA,推出∠DBO=90°,根據(jù)切線(xiàn)判定推出即可;
(2)先證明△ABD≌△EOD,將陰影部分的面積轉(zhuǎn)化為扇形OBE的面積.
解答:(1)證明:連接OB,
∵AC是⊙O直徑,
∴OA=OC,
∵AB=AD,A為OD中點(diǎn),
∴AB=AD=OA,
∴∠DBO=90°,
∴OB⊥DB,
∵OB為半徑,
∴BD是⊙O切線(xiàn);

(2)解:連接OE,OB,
∵∠DBO=90°,AE∥BD,
∴∠ADO=90°,
∵AB=AD=OA,
∴AB=OE,
∴△ABD≌△EOD,
∴S陰影=S扇形OBE==
點(diǎn)評(píng):本題考查了切線(xiàn)的判定,等腰三角形的性質(zhì),直角三角形的判定,垂徑定理,圓周角定理,特殊角的三角函數(shù)值,三角形的面積,扇形的面積,弓形的面積等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且OA=AB=AD.
(1)求證:BD是⊙O的切線(xiàn);
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且BE=8,tan∠BFA=
5
2
,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
選做題:甲:已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根x1、x2滿(mǎn)足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線(xiàn).
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,BD是⊙O的切線(xiàn),且AB=AD.
(1)求證:點(diǎn)A是DO的中點(diǎn).
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
23
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且∠D=∠C=30°.
(1)求證:BD是⊙O的切線(xiàn).
(2)分別過(guò)B、F兩點(diǎn)作DC的垂線(xiàn),垂足分別為M、N,且CN:CM=2:3若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,△ABC的面積為12cm2,cos∠EFC=
23
,求△BFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線(xiàn).
(2)若點(diǎn)E是劣弧
AB
上一點(diǎn),AE與BC相交于點(diǎn)F,且∠ABE=105°,BD=2
3
,求出AE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案