【題目】如圖,拋物線C1:y=x2+4x﹣3與x軸交于A、B兩點,將C1向右平移得到C2,C2與x軸交于B、C兩點.
(1)求拋物線C2的解析式.
(2)點D是拋物線C2在x軸上方的圖象上一點,求S△ABD的最大值.
(3)直線l過點A,且垂直于x軸,直線l沿x軸正方向向右平移的過程中,交C1于點E交C2于點F,當線段EF=5時,求點E的坐標.
【答案】(1)、y=﹣x2+8x﹣15;(2)、1;(3)、(,)或(,﹣)
【解析】試題分析:(1)、先依據配方法求得拋物線C1的頂點坐標,然后令y=0,求得點A、B的坐標,從而可判斷出C1平移的方向和距離,于是得到拋物線C2的頂點坐標,從而得到C2的解析式;(2)、根據函數圖象可知,當點D為C2的頂點時,△ABD的面積最大;(3)、設點E的坐標為(x,﹣x2+4x﹣3),則點F的坐標為(x,﹣x2+8x﹣15),然后可求得EF長度的解析式,最后根據EF=5,可列出關于x的方程,從而可求得x的值,于是的得到點E的坐標.
試題解析:(1)、∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴拋物線C1的頂點坐標為(2,1).
令y=0,得﹣(x﹣2)2+1=0,解得:x1=1,x2=3.∵C2經過B,∴C1向右平移了2個單位長度.
∵將拋物線向右平移兩個單位時,拋物線C2的頂點坐標為(4,1),
∴C2的解析式為y2=﹣(x﹣4)2+1,即y=﹣x2+8x﹣15.
(2)、根據函數圖象可知,當點D為C2的頂點時,縱坐標最大,即D(4,1)時,△ABD的面積最大
S△ABD=AB|yD|=×2×1=1.
(3)、設點E的坐標為(x,﹣x2+4x﹣3),則點F的坐標為(x,﹣x2+8x﹣15).
EF=|(﹣x2+4x﹣3)﹣(﹣x2+8x﹣15)|=|﹣4x+12|.∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.
解得:x=或x=.
∴點E的坐標為(,)或(,﹣)時,EF=5.
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE.
(2)如圖②,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,AF=BF,原題設其他條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖①,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數量關系.
(1)【發(fā)現證明】
小聰把△ABE繞點A逆時針旋轉90°至△ADG的位置,從而發(fā)現EF=BE+FD,請你利用圖①證明上述結論.
(2)【類比引申】
如圖②,在四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E,F分別在邊BC,CD上,則當∠EAF與∠BAD滿足關系時,仍有EF=BE+FD.請說明理由.
(3)【探究應用】
如圖③,在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80 m,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分別有景點E,F,且AE⊥AD,DF=40( -1)m,現要在E,F之間修一條筆直的道路,求這條道路EF的長(結果精確到1 m,參考數據: ≈1.41, ≈1.73).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“搶紅包”是2015年春節(jié)十分火爆的一項網絡活動,某企業(yè)有4000名職工,從中隨機抽取350人,按年齡分布和對“搶紅包”所持態(tài)度情況進行了調查,并將調查結果繪成了條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)這次調查中,如果職工年齡的中位數是整數,那么這個中位數所在的年齡段是哪一段?
(2)如果把對“搶紅包”所持態(tài)度中的“經常(搶紅包)”和“偶爾(搶紅包)”統(tǒng)稱為“參與搶紅包”,那么這次接受調查的職工中“參與搶紅包”的人數是多少?
(3)請估計該企業(yè)“從不(搶紅包)”的人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A5B5A6的邊長為( )
A.6
B.16
C.32
D.64
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com