【題目】將兩塊直角三角形紙板如圖①擺放,,現(xiàn)將點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng);

當(dāng)轉(zhuǎn)動(dòng)至圖②位置時(shí),若,且平分平分,則 _;

當(dāng)轉(zhuǎn)動(dòng)至圖③位置時(shí),平分平分,求的度數(shù);

當(dāng)轉(zhuǎn)動(dòng)至圖④位置時(shí),平分平分,請(qǐng)直接寫出的度數(shù).

【答案】(1)75°;②75°;75°

【解析】

1)先求出∠BCD,再根據(jù)角平分線的性質(zhì)求出∠ACM和∠BCN,根據(jù)∠MCN=ACB-ACM-BCN計(jì)算即可得出答案;

2)先根據(jù)角平分線的性質(zhì)得出∠ACM=ACE,∠BCN=BCD,再根據(jù)

代入求解即可得出答案;

3)步驟同(2)一樣.

解:(1)根據(jù)題意可得∠BCD=ACB-DCE-ACE=10°

CM平分∠ACE,CN平分∠BCD

∴∠ACM=ACE=10°,∠BCN=BCD=5°

∴∠MCN=ACB-ACM-BCN=75°

2)∵CM平分∠ACE,CN平分∠BCD

∴∠ACM=ACE,∠BCN=BCD

3)∵CM平分∠ACE,CN平分∠BCD

∴∠ACM=ACE,∠BCN=BCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,ADACADAC,EAB的中點(diǎn),FAC延長(zhǎng)線上一點(diǎn).

1)若EDEF,求證:EDEF;

2)在(1)的條件下,若DC的延長(zhǎng)線與FB交于點(diǎn)P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請(qǐng)先補(bǔ)全圖形,再解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.

①求證:BD⊥CF;

②當(dāng)AB=4,AD=時(shí),求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦BC=2,點(diǎn)A是優(yōu)弧BC上一動(dòng)點(diǎn)(不包括端點(diǎn)),ABC的高BD、CE相交于點(diǎn)F,連結(jié)ED.下列四個(gè)結(jié)論:

①∠A始終為60°;

②當(dāng)∠ABC=45°時(shí),AE=EF;

③當(dāng)ABC為銳角三角形時(shí),ED=

④線段ED的垂直平分線必平分弦BC.

其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線、相交于,∠EOC=90°,的角平分線,,求的度數(shù).其中一種解題過程如下:請(qǐng)?jiān)诶ㄌ?hào)中注明根據(jù),在橫線上補(bǔ)全步驟.

解:∵

( )

的角平分線

( )

( )

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型商場(chǎng)銷售一種茶具和茶碗,茶具每套定價(jià)2000元,茶碗每只定價(jià)200元,“雙十一”期間商場(chǎng)決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案,方案一:買一套茶具送一只茶碗;方案二,茶具和茶碗按定價(jià)的九五折付款,現(xiàn)在某客戶要到商場(chǎng)購(gòu)買茶具30套,茶碗只().

(1)若客戶按方案一,需要付款  元;若客戶按方案二,需要付款 元.(用含的代數(shù)式表示)

(2)若,試通過計(jì)算說明此時(shí)哪種購(gòu)買方案比較合適?

(3)當(dāng),能否找到一種更為省錢的方案,如果能是寫出你的方案,并計(jì)算出此方案應(yīng)付錢數(shù);如果不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)直角梯形的一條底邊長(zhǎng)為7厘米,兩腰長(zhǎng)分別為8厘米和10厘米,那么這個(gè)梯形的中位線是____厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)POM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案