如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線。

(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。

解:(1) ∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,
∴由條件可得RtΔAOC∽ RtΔCOB,
,由A、B坐標(biāo)∴,解得OC=3(負(fù)值舍去),∴C(0,-3)
設(shè)拋物線解析式為y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),解得a=
∴二次函數(shù)的解析式為y=(x+1)(x-9),即y=x2-x-3;
(2) ∵AB為O′的直徑,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0),
∵點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,
∴∠BCD=45°,連結(jié)O′D,則∠BO′D=90°(同弦BD所對(duì)的圓心角)
∴D (4,-5),
直線BC解析式為y=x-3 、直線BD解析式為y=x-9
(3)①當(dāng)DP1∥CB時(shí),能使∠PDB=∠CBD,
又∵DP1∥CB,
∴設(shè)直線DP1的解析式為y=x+n,
把D(4,-5)代入可求n=-,
∴直線DP1解析式為y=x-,
DP1與拋物線的交點(diǎn)滿足x-=x2-x-3
∴點(diǎn)P1坐標(biāo)為
②當(dāng)CQ∥BD時(shí),求得圓上點(diǎn)Q(7,4),直線DQ與拋物線交于點(diǎn)P2 (14,25)。
(答案不唯一)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)F的坐標(biāo)為(3,0),點(diǎn)A,B分別是某函數(shù)圖象與x軸、y軸的交點(diǎn),點(diǎn)P是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)P的橫坐標(biāo)為x,PF的長(zhǎng)為d,且d與x之間滿足關(guān)系:d=5-
35
x(0≤x≤5),給出以下四個(gè)結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(
3
2
,-2),點(diǎn)P在直線y=-x上運(yùn)動(dòng),當(dāng)|PA-PB|最大時(shí)點(diǎn)P的坐標(biāo)為(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是
 
(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)B的坐標(biāo)為(6,9),點(diǎn)A的坐標(biāo)為(6,6),點(diǎn)P為⊙A上一動(dòng)點(diǎn),PB的延長(zhǎng)線交⊙A于點(diǎn)N、直線CD⊥AP于點(diǎn)C,交PN于點(diǎn)D,交⊙A于E、F兩點(diǎn),且PC:CA=2:3.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)使得點(diǎn)E為劣弧
PN
的中點(diǎn)時(shí),求證:DF=DN;
(2)在(1)的條件下求tan∠CDP的值;
(3)當(dāng)⊙A的半徑為5,且△APD的面積取得最大值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
3
x
的圖象與線段OA、AB分別交于點(diǎn)C、D.若以點(diǎn)C為圓心,CA的k倍的長(zhǎng)為半徑作圓,該圓與x軸相切,則k的值為
3+
3
4
3+
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案