【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、在同一條直線上,連接.

1)請找出圖2中的全等三角形,并說明理由(說明:結(jié)論中不得含有圖中未標識的字母);

2垂直嗎?為什么?

【答案】1,理由詳見解析;(2),理由詳見解析.

【解析】

1)根據(jù)ABCAED均為等腰直角三角形,易得AB=AC、AE=AD,∠BAC=EAD=90°,結(jié)合∠CAE是公共角,確定∠BAE與∠CAD的數(shù)量關(guān)系,便可證明全等三角形;

2)由ABC是等腰直角三角形可得∠ABC=ACB=45°,再結(jié)合全等三角形的性質(zhì)求出∠BCD,即可判斷BEDC的位置關(guān)系.

1

理由:∵都是等腰直角三角形

,,

2DCBE.理由如下:

∵△ABC是等腰直角三角形,

∴∠ACB=ABE=45°.

由(1)知

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解同學(xué)們課外閱讀名著的情況,在八年級隨機抽查了20名學(xué)生,調(diào)查結(jié)果如表所示:

課外名著閱讀量()

8

9

10

11

12

學(xué)生人數(shù)

3

3

4

6

4

關(guān)于這20名學(xué)生課外閱讀名著的情況,下列說法錯誤的是( )

A.中位數(shù)是10B.平均數(shù)是10.25C.眾數(shù)是11D.閱讀量不低于10本的同學(xué)點70%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,ABC=90°,AB=12,AD=4,BC=9,點PAB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2A品牌和3B品牌的計算器共需156元;購買3A品牌和1B品牌的計算器共需122元。

1)求這兩種品牌計算器的單價;

2)學(xué)校開學(xué)前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售。設(shè)購買個x個A品牌的計算器需要1元,購買B品牌的計算器需要2元,分別求出1、y2關(guān)于的函數(shù)關(guān)系式

3)小明準備聯(lián)系一部分同學(xué)集體購買同一品牌的計算器,若購買計算器的數(shù)量超過5個,購買哪種品牌的計算器更合算?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,點在邊上,聯(lián)結(jié).

如圖,將沿著翻折,點的對應(yīng)點是點,若平分,則的值等于 ;

.繞著點旋轉(zhuǎn),使得點的對應(yīng)點落在邊上,點的對應(yīng)點分別是點,則的面積等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)積極倡導(dǎo)陽光體育運動,提高中學(xué)生身體素質(zhì),開展跳繩比賽,下表為該校6140人參加跳繩比賽的情況,若標準數(shù)量為每人每分鐘100個.

1)求6140人一分鐘內(nèi)平均每人跳繩多少個?

2)規(guī)定跳繩超過標準數(shù)量,每多跳1個繩加3分;規(guī)定跳繩未達到標準數(shù)量,每少跳1個繩,扣1分,若班級跳繩總積分超過250分,便可得到學(xué)校的獎勵,通過計算說明61班能否得到學(xué)校獎勵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.

(1)如圖1,當點E、F在線段AD上時,求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.

查看答案和解析>>

同步練習冊答案